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Abstract

Station seeking by stratospheric balloons is an im-
portant problem amenable to reinforcement learn-
ing. In this Final Project Report, we define sta-
tion keeping as a reinforcement learning problem
and report on seven agents (three control agents
implemented by others and four reinforcement
agents trained by us). We evaluated the agents
within the Balloon Learning Environment and
found relatively good performance by two pos-
itive controls (StationSeeker and ‘“Perciatelli”),
intermediate performance by two of our agents
(PPO and DQN), and poor performance by our
other two agents (discrete SAC and QR-DQN)
as well as the random walk negative control. Fu-
ture work includes (1) determining the problems
with the discrete SAC and QR-DQN agents and
engineering them to learn, (2) systematically tun-
ing hyperparameters for better agent performance
overall, and (3) determining the reason for dif-
ferences observed between our results and those
reported in the literature.

1. Introduction

Lighter-than-air stratospheric balloons are used in scien-
tific research, in the military arena, and in civil applications
such as predicting the paths of forest fires and establishing
communications networks after disasters (Osprey, 2020).
To operate effectively, these balloons need to steer to a lo-
cation and then maintain position. This is called station
keeping. However, stratospheric balloons have no powered
locomotion, so the means of steering is to collect or dispense
with ballast (e.g., air) in a fixed volume chamber, causing
a change in elevation to one with favorable winds that then
guide the balloon towards its station. This steering needs
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to take into account predicted winds as a function of eleva-
tion, air temperature and pressure, internal pressure, time of
day, and power reserves. Traditionally, this has been done
with a combination of heuristic-based computer programs
and ground-based human pilots. However, in recent years
reinforcement learning (RL) has been used to improve sta-
tion keeping as compared to traditional methods (Bellemare
et al., 2020; Yang et al., 2020; Gannetti et al., 2023; Jeger
et al., 2023; Saunders et al., 2023; 2024). In this study,
we aimed to the compare the published RL methods used
for station keeping within a consistent simulated environ-
ment in order to see which one might be best for real-world
implementation.

2. Related Work

Surveying the literature on the RL methods used for station
keeping, slightly older papers (published 1-4 years ago) used
variants of the Deep Q-Network (DQN) algorithm while
slightly newer papers (published 0-2 years ago) used the Soft
Actor Critic (SAC) algorithm. Specifically, Bellemare et
al. used Quantile Regression DQN (QR-DQN) (Bellemare
et al., 2020), Xu et al. used dueling double DQN (DD-
DQN) (Xu et al., 2022), and Gannetti et al. used vanilla
DQON (Gannetti et al., 2023); Jeger et al. and Saunders
et al. used the Soft Actor Critic (SAC) algorithm (Jeger
et al., 2023; Saunders et al., 2023; 2024). Curiously, we
found no papers using Proximal Policy Optimization (PPO)
(Schulman et al., 2017) or policy gradient algorithms for the
station keeping problem.

3. Our Approach
3.1. Reinforcement Learning Problem Definition

For our purposes, we define the stratospheric balloon station
keeping RL problem as a finite-horizon, discounted MDP,
<8, A, R, T,~ >. Following Bellemare et al. (Bellemare
et al., 2020), we define the state space S as consisting of
a mix of 373 discrete and continuous variables related to
the internal state of the balloon (altitude, power reserves,
various pressures, last action, etc.) along with a cellularized
column of wind attributes (magnitude, relative bearing, and
uncertainty). For specific details see Bellemare et. al. We
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define the discrete action space to consist of three actions:
ascend, descend, and stay level. The distance based, power
penalized reward reward function is

r(s,a) =r(Aw) = furas(A), (D
where
r(8) = {icff’fz—m—pw weraice @
and
R

Here, p is the distance in km from a vertical line extending
from the surface of the Earth defining the center of a station
and w € [0, 1] is a normalized measure of power consump-
tion. Continuing to follow Bellemare et al. (Bellemare et al.,
2020), we use cqif = 0.4 and 7 = 100 km as those authors
found through experimentation that those values give the
best performance for station keeping with a 50 km radius.
We do not define the transition probabilities 1" explicitly
as they are only considered implicitly in the algorithms we
used in this study.

3.2. Simulation Environment

For a simulation environment, we used Google’s Balloon
Learning Environment developed by the Google Loon team
(Greaves et al., 2021), which is designed for the state space,
action space, and reward function as we have defined them
above. Each training or evaluation episode was a simu-
lated instance of station keeping consisting of 960 three
minute steps (48 hours total) whereby a stratospheric bal-
loon attempted to steer in an uncertain wind field using
simulated physics. Each episode was initialized with 95%
battery charge, a distance away from station sampled from
a beta distribution, angle relative to the station sampled
uniformly between O and 27, internal pressure sampled
uniformly from valid pressures (Bellemare et al., 2020),
zero super pressure, latitude sample uniformly between -10
and 10 degrees, longitude sampled uniformly between -175
and 175 degrees, starting time sampled to the second uni-
formly between 00:00:00 on Jan. 1, 2011 and 00:00:00 on
Dec. 31, 2014. In addition, the simulated atmosphere was
initialized and winds were simulated with the default param-
eters of the Balloon Learning Environment. The Balloon
Learning Environment’s wind simulations are based on the
ble_wind_field data set (Hersbach, 2017).

3.3. Algorithms and Training

To perform a comparative analysis of the RL techniques
used for stratospheric balloon station keeping, we used or
attempted to use the following algorithms to solve our RL

problem: PPO, DQN, QR-DQN, and SAC (discrete ver-
sion).

We started with PPO, an on-policy gradient method with a
clipped surrogate objective function that ensures updated
policies do not change too much compared to the policy in
the previous update step. For algorithm details and to see the
form of the objective function, see (Schulman et al., 2017).
In our implementation, we adapted the PPO algorithm from
CS234 Homework 2. We trained a PPO agent on 3500
episodes, and we found that we were able to learn (see Fig.
1). For hyperparameter details, see Appendix A.1.
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Figure 1. Smoothed learning curves.

Next, we tried applying DQN and QR-DQN agents supplied
by the Balloon Learning Environment (Greaves et al., 2021;
Castro et al., 2018; Bellemare et al., 2020). DQN is an off-
policy, neural network-parameterized Q-learning method
characterized by (1) the use of two Q-networks (an online
learning network and a target network), and (2) experience
replay. For algorithm details, see (Mnih et al., 2013). QR-
DQN extends DQN by learning a value distribution instead
of a just a value function (i.e., the mean). This was shown
to have better empirical results than DQN on Atari games,
and we surmised it may show similar gains in the Balloon
Learning Environment (Dabney et al., 2018; Bellemare et al.,
2020). Unfortunately, we could neither get the DQN nor the
QR-DQN agents to learn, despite trying many combinations
of hyperparameters. We do not report the DQN results
here. See Fig. 1 to see the QR-DQN learning curve over the
course of 2,000 training episodes. We noted as we wrote this
report that we may have made a bad choice of the random
walk exploration probability (0.8; see Section A.3), leading
to too much exploration and too little exploitation. In future
work, we would try smaller choices of this parameter, in the
0.01 to 0.1 range.
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Not wanting to give up on DQN, we next drew inspiration
from a PyTorch DQN tutorial and associated Git repository
(Paszke & Towers, 2022; 2024). We adapted the code from
this tutorial to implement our own DQN agent, and we were
successfully able to get this agent to learn over the course
of 3,500 episodes of training (see Fig. 1). See Section A.2
for hyperparameter choices.

Finally, we wanted to explore SAC as it was used by two
different groups in the literature (Jeger et al., 2023; Saun-
ders et al., 2023; 2024). SAC is an off-policy algorithm that
attempts to maximize expected reward while also maximiz-
ing entropy in a stochastic actor-critic framework (Haarnoja
et al., 2018). First, we needed to adapt SAC to the discrete
action setting since it was originally designed for continu-
ous action spaces. We did this by following the guidance in
(Christodoulou, 2019; Zhou et al., 2022b) and adapting the
code from the associated Git repository (Zhou et al., 2022a).
Unfortunately, the SAC learning results were abysmal (see
Fig. 1). We were not able to achieve a reasonable learning
curve, even one that looked as if it was functional but just
wasn’t learning. We attributed the issue to a problem with
our code that we could not locate within the time allotted
for this project.

4. Experimental Results: Evaluation

To evaluate the relative quality of our models, we use three
control agents: (1) an agent that performs a random walk
by aiming for a random pressure target (uniformly sam-
pled among valid pressures), (2) StationSeeker, a heuristics-
based steering program from the Balloon Learning Environ-
ment with strong empirical performance (Bellemare et al.,
2020), and “Perciatelli,” a frozen QR-DQN model devel-
oped by Bellemare et al. and cited by those authors as the
model with best performance they achieved and close to the
best performance possible.
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Figure 2. Average TWRS50 per evaluation episode.
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Figure 3. Average energy consumed per evaluation episode.
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Figure 4. Ratio of average TWRS50 to average energy consumed.

We evaluated the three control agents along with the PPO,
DQN, QR-DQN, and discrete SAC agents of over the course
of 1,000 episodes. For each episode, we calculated (1)
the proportion of time spent within a 50 km radius of the
station (the TWRS0 metric, an industry standard), (2) the
total energy consumed by the balloon per episode, and (3)
the distance from the balloon to the station at each time
increment. We also recorded the 3D trajectories. For each
agent, we plot (1) the average TWRS0 (Fig. 2), (2) the
average energy consumed (Fig. 3), and (3) the ratio of the
average TWRS50 to the average energy consumed. We also
plot a histogram of the distance to station (Fig. 5 shows
the near station behavior while Fig. 6 shows the behavior
farther away from station). We also display a sample of the
paths taken by the balloon while station keeping under the
guidance of each type of agent projected in two dimensions
(Fig. 7). Fig. 8 shows example paths of the PPO, DQN, and
Perciatelli agents’ paths in three dimensions. Finally, we
produced heat maps depicted the spatial distribution of each
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Figure 5. Histogram of distance to station. The data being binned
are distances measured at each time step for all time steps in all
evaluation episodes. This histogram limits the horizontal axis
to 150 km to show the behavior of the agents inside and nearby
station.

agent in and around station (Fig. 9).

From these figures, we make the following observations:

» The positive StationSeeker and Perciatelli controls out-
perform the Random Walk negative control (higher
TWRS50 values and lower energy consumption /
TWRS50 ratios. PPO and DQN perform better than
chance, but not as good as StationSeeker and Perci-
atelli. As expected by its terrible training curve, dis-
crete SAC performs at random walk levels or perhaps
slightly worse. See Figs. 2 and 4. Neither of the two
random walk and discrete SAC agents are spending
energy keeping the balloon near the station.

» From Fig. 2, we note that the average TWRS50 values
for StationSeeker (30.8%) and Perciatelli (33.8%) are
lower than the values for the same cited in (Bellemare
et al., 2020) (40.5% and 55.1%, respectively). We are
not sure of the reason for the discrepancy. We double-
checked that we are using the same environment and
reward function parameters as Bellemare et al., and
we could not locate a reason for the difference in our
results from those reported in the literature.

* From Fig. 5, StationSeeker, PPO, and DQN all keep
the balloon relatively closer to station than Perciatelli,
whereas Perciatelli allows the balloon to spend more
time closer to the 50 km boundary. We interpret this
behavior as the agent finding a way to optimize power
resources will still keeping within 50 km of station
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Figure 6. Histogram of distance to station. The data being binned
are distances measured at each time step for all time steps in all
evaluation episodes. This histogram extends the horizontal axis to
800 km so the tail behavior of each agent can be observed.

(Bellemare et al., 2020).

* In Fig. 7, StationSeeker and Perciatelli qualitatively
look as if they are station keeping well, whereas Ran-
dom Walk and discrete SAC look like they are wan-
dering aimlessly. As expected, PPO and DQN fall
somewhere in between.

5. PPO Discussion

In this work, we trained a PPO agent to keep station, some-
thing that had not been done in the literature. In considering
why PPO and other policy gradient methods have not been
chosen for the station keeping problem, we hypothesize
that the reason may have to do with data efficiency. DQN,
QR-DQN, and SAC all use experience replay and hence con-
tinually learn from prior experiences, whereas PPO learns
from newly collected trajectories in an on-policy fashion.
This difference is especially significant when the simulated
environment is computationally expensive, such as the Bal-
loon Learning Environment (Bellemare et al., 2020; Greaves
etal., 2021). Experience replay may also contribute to the
underlying quality of agents that are trained with it, as those
agents may more easily recover from poor early decisions
or difficult initial states. Agents trained with experience
replay learn from individual actions, allowing them to learn
recovery strategies at a fine granularity and relatively early
on. In contrast, PPO trains on returns from entire rollouts,
requiring it to explore one or more full recovery trajectories
by chance before it can successfully exploit them.
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6. Conclusion

In this work, we attempted to perform a comparative analy-
sis of reinforcement learning algorithms used in the litera-
ture for the problem of stratospheric balloon station keeping.
We were partially successful. Within the Balloon Learn-
ing Environment framework, we successfully implemented
PPO and DQN agents. While those agents clearly learned,
they were not competitive with the state-of-the-art agent
reported in Bellemare et al. (Bellemare et al., 2020) (i.e.,
Perciatelli). On the other hand, our attempts to train and/or
implement QR-DQN and discrete SAC were not success-
ful. To truly make our research a comparative analysis of
RL methods for station keeping, as is our aim, our future
work includes (1) determining the problems with the dis-
crete SAC and QR-DQN agents and engineering them to
learn, (2) systematically tuning hyperparameters for better
agent performance overall, (3) determining the reason(s) for
differences observed between our results and those reported
by Bellemare et al., and (4) implementing a dueling DQN
agent (since dueling DQN was in the literature, but we did
not implement it here).

We would like to mention that we were compute resource
limited in performing this research, with training and evalu-
ation runs taking 24-48 hours. In the future, if we are able
to access faster compute resources and/or have more time to
train and evaluate many, many more models, we expect to
make better progress towards our stated goal of completing
a true comparative analysis of state-of-the-art RL. methods
for stratospheric balloon station keeping.

7. Location of Source Code and Model
Checkpoints

The source code and model checkpoints for this project can
be found on Github at the following hyperlink: https:
//github.com/spcorum/student_balloon/.

8. Statement of Author Contributions

Sean Corum and Jared Watrous overall contributed equally
on this project. Sean was mainly responsible for coming
up with the original idea, performing research and finding
relevant papers and Git repositories, and writing the project
proposal, the milestone report, the poster, and the final re-
port. Jared was responsible for coding, training models,
performing evaluations, and generating results plots. Jared
also helped write the project proposal and researched some
Git repositories. Both Sean and Jared collaborated equally
on the direction of research of the project as it was being
completed.

A. Agent Hyperparameters

Most hyperparameters were adjusted by hand until a com-
bination that seemed to learn as well as we could find com-
pared to other combinations. Network sizes of seven or
eight fully connected hidden layers of 600 units wide and
discount factor = 0.993 were chosen in accordance with
best parameters found by Bellemare et al. (Bellemare et al.,
2020).

A.1. PPO

For PPO, we used a two neural networks, a policy network
and a baseline network, both parameterized by a neural
network of seven hidden layers with each layer 600 units
wide (each hidden layer consisted of a fully connected linear
layer with ReLU rectification), Adam optimization with
PyTorch default parameters, 100 Adam optimization steps
per network update, a learning rate of 1 x 1075, 5 episodes
between network updates, a discount factor of 0.993, and
a value of e, of 0.15. Advantages were normalized and
calculated with a baseline.

A.2.DQN

For DQN, we used two Q-networks (one online and one
target) parameterized by neural networks of eight hidden
layers with each layer 600 units wide (each hidden layer
consisted of a fully connected linear layer with ReLU rectifi-
cation), a learning rate of 2 x 10~5, Adam optimization with
PyTorch default parameters, 100 Adam optimization steps
per network update, a batch size of 32, a discount factor of
0.993, a replay buffer size of 500,000, a soft update factor
for the target network (7) of 0.05, and a greedy € parameter
decayed from 0.9 to 0.05 over 10000 steps (extrapolated).

A.3. QR-DQN

For QR-DQN, we used two Q-networks (one online and one
target) parameterized by neural networks of eight hidden
with each layer 600 units wide (each hidden layer consisted
of a fully connected linear layer with ReLU rectification),
a learning rate of 2 x 106, Adam optimization with Py-
Torch default parameters, 100 Adam optimization steps per
network update, a batch size of 32, a discount factor of
0.993, a replay buffer size of 2,000,000, and a random walk
exploration probability of 0.8.

A.4. Discrete SAC

For Discrete SAC, we used one actor and two critic networks
each parameterized as neural networks of eight hidden with
each layer 600 units wide (each hidden layer consisted of
a fully connected linear layer with ReLU rectification), a
learning rate of 2 x 1076, Adam optimization with PyTorch
default parameters, 100 Adam optimization steps per net-
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work update, a batch size of 64, a discount factor of 0.993,
a replay buffer size of 500,000, a soft update factor for the
target network (7) of 0.005, and an entropy weight parame-
ter a of 0.05. The authors in (Zhou et al., 2022b) mention

“avg_q”, “clip_q”, and “entropy_penalty” parameters, which
we all set to zero.
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Figure 7. Sampling of two-dimensional paths taken by balloons
for four sample episodes for each agent. The space is a Cartesian
projection onto longitude (y-axis) and latitude (x-axis). The origin

is at the respective station and increments on both axes are in km.
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Figure 8. Example three-dimensional paths taken by PPO, DQN,
and Perciatelli agents.
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Figure 9. Heatmaps depicting the spatial distribution of each agent
in and around station. The color axis varies between 0 and 1,000,
and each color unit represents a count of one increment of one
episode an agent spends in a cell. The origin is at the center of the
station and increments on both axes are in km.



