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ABSTRACT

Offline reinforcement learning (RL) is the family of reinforcement learning ap-
proaches that uses a fixed dataset of trajectories and learns a policy without need-
ing to interact with the environment. By separating the dataset and the learning
algorithm, offline RL is an effective and interpretable method that can benefit from
both data and inference improvements independently. In previous works, datasets
used for offline RL have often relied upon online RL trajectories or expert demon-
strations, but this approach can be expensive or fail to generalize to broader tasks.
In this paper, we address these limitations by combining expert demonstrations
with unsupervised data collection methods to explore the benefits of data scaling
and data diversity in a multi-task and multi-goal setting.
We compare five different unsupervised data collection methods: random ac-
tions, Random Network Distillation (RND), Hindsight Goal-Conditioned Rein-
forcement Learning (GCRL), Active Pretraining with Successor Features (APS),
and Contrastic Intrinsic Control (CIC). Using Meta-World, an open-source multi-
task and meta-reinforcement learning robot arm simulator, we use each of these
five methods to collect data on multiple task environments and goal positions. We
then combine data from these methods with varying amounts of expert demon-
stration data and train an offline RL Implicit Q-Learning (IQL) model, evaluating
the success rates on the corresponding environments. We further investigate how
the training dataset composition, such as metrics relating to extrinsic rewards and
state diversity affects the performance of downstream models.
Our results show that in the completely unsupervised setting, where offline RL
datasets do not contain expert demonstrations, APS and CIC tend to collect more
diverse and useful data compared to other methods. However, this is somewhat
dependent on the environment, and overall the best data collection method, CIC,
outperforms the random baseline by a 2.6% success rate in the multi-goal setting.
We also find that combining unsupervised data collection with sufficient expert
demonstration data tends to significantly benefit the downstream offline model,
with the increase in success rate correlating positively with the number of expert
demonstrations used. However, in some scenarios, incorporating only very few
expert demonstration trajectories actually reduced the performance of downstream
models, and we believe a possible reason for this is unstable gradient updates
when encountering insufficient expert demonstrations. But with just a modest
amount of expert data we find our approach very useful in retaining information
on both task generalization and specific demonstrations, achieving significantly
higher performance than unsupervised-only baselines.
Moreover, we explore training a single multi-goal, multi-task model on all 10
environments using only the unsupervised data. While performance on all tasks is
lower than when trained independently by environment, we find that performance
degeneration varies among different data collection methods, with APS retaining
the most performance.
By combining various unsupervised data collection methods and few-shot expert
demonstrations for downstream Offline RL in a multi-task setting, we illustrate
a novel method for using offline learning effectively in a variety of applications.
With only a modest number of expert demonstrations and autonomously collected
data that does not require supervised environment rewards, we demonstrate a path
forward full of new possibilities for offline RL.
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1 INTRODUCTION

Offline reinforcement learning (RL) is a method that differs from standard online RL by not allow-
ing interaction with the environment, and instead assuming the existence of a dataset of trajectories
and learning a policy based only on these trajectories. This technique has shown promising results,
allowing models to leverage efficient training schema to learn complex policies Yarats et al. (2022),
and it benefits from data scaling laws in line with supervised learning methods, along with inference
completely disjoint from exploration, which is easier to analyze compared to online RL. However,
an under-specified area in offline RL is how to create these datasets in the first place, and the per-
formance of these models is highly dependent on the features of the data, including the collection
method, state space coverage, and the sparsity of the rewards.

To overcome the challenges associated with this data dependency, many models have historically re-
lied on expert demonstrations, training episodes in which an external controller entity demonstrates
a successful completion of the task Yarats et al. (2022). Especially in the offline case, this helps
fully decouple the exploration/exploitation trade-off, as the data collector no longer needs to concern
itself with ensuring a high sample density near the goal state. Although this tends to work well in
practice, it requires a manual data collection phase involving the influence of an (often human) ex-
pert, which may be difficult or impossible when many demonstrations are needed. This is especially
true in a multi-task or multi-goal setting, where collecting multiple expert demonstrations for every
possible task or goal may be infeasible or resource inefficient.

Various autonomous data collection approaches have been attempted Endrawis et al. (2021) and
show success for generating useful datasets in offline RL, but a drawback of these approaches has
been the apparent intractability for particularly difficult environments, such as robotics tasks com-
bining multiple complex actions. To achieve the best of both worlds, we combine unsupervised data
collection with few-shot expert demonstrations with the goal of data efficiency and generalization to
multiple tasks. In this regard, we (1) experiment with different autonomous data collection methods
across multiple environments in the multi-goal setting, and (2) examine the performance of each
method when combined with few-shot expert demonstrations. We evaluate the quality of a collected
dataset primarily by the success rate of an offline model trained on it, while also inspecting other
intuitive metrics such as reward density.

Figure 1: Illustration of our method for employing unsupervised data collection and expert demon-
strations in robot learning tasks.
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2 RELATED WORK

2.1 OFFLINE RL CHALLENGES

Given that offline RL involves no environment interaction, the separation of data collection and
inference upon such data is an explicit separation between exploration and exploitation, a common
trade-off in online RL Yarats et al. (2022). Historically offline RL theory and application has
focused only on the inference side, leaving data collection to be done ad hoc and aribtrarily from
expert demonstrations or using the traces of online RL algorithms, but such an approach leaves a
significant gap in dataset understanding Rashidinejad et al. (2023).

In particular, Rashidinejad et al. (2023) note how attributes of both expert data, trajectories that are
collected from direct task demonstrations by experts, and uniform coverage data, data that deliber-
ately covers all parts of the observation space, are important for offline RL algorithms. They propose
theoretical frameworks to bridge this data composition range, and develop an offline RL algorithm
that adapts to the type of data composition.

Another significant related challenge in data collection for offline RL is the multi-task and/or multi-
goal setting. In many environments it is common to be able to collect expert demonstrations for a
finite set of tasks and/or goals, but to ensure the data collected generalizes to any relevant task or goal
is more difficult. Lambert et al. (2022) call the family of exploration methods in this setting as task-
agnostic exploration, moddling their approach as online planning with exploration. The resulting
Intrinsic Model Predictive Control method with Random Network Distllation (RND) Burda et al.
(2018) and Dynamics Dissimilarity (DD) to measure curiosity in the data collection process. They
then evaluate with offline RL inference on out of distribution tasks and goals, showing how task-
agnostic methods can almost match the performance as task-aware methods.

2.2 UNSUPERVISED RL

Unsupervised reinforcement learning encompasses the umbrella of all applications where an agent
learns without using extrinsic environment rewards. Instead, a measure of intrinsic reward is passed
into an online algorithm to guide the agent’s control Laskin et al. (2021). Yarats et al. (2022)
define three broad categories for intrinsic reward schema: knowledge-based, which minimizes the
uncertainty of a predictive model, data-based, which maximizes the coverage of the observation
space, and skill-based, which attempts to learn self-generated skill representations. Note that the
more common application of unsupervised RL is to then finetune the same network in a supervised
way using the extrinsic reward, and Laskin et al. (2021) find this approach of unsupervised RL as
pretraining to be very successful.

Knowledge-Based Unsupervised RL Burda et al. (2018) introduce Random Network Distillation
(RND), which uses a randomly initialized frozen target network f̂ and student network f that encode
states into some embedding dimension d. The intrinsic motivation for a state s is measured as

I(s) = ||f(s)− f̂(x)||22

The agent takes actions to maximize the sum of the extrinsic reward and I . The student network is
trained with loss the same as the intrinsic motivation so that it emulates the target for states already
visited.

Data-Based Unsupervised RL Endrawis et al. (2021) use goal-conditioned reinforcement learn-
ing (GCRL) as a form of intrinsic motivation, learning a goal conditioned policy ϕ(s, g) that attempts
to bring state s to goal g. Goals are explicitly determined during learning by sampling a replay buffer
and determining the highest novelty observation from RND. Endrawis et al. (2021) show that their
method explores the whole state space more effectively than knowledge-based exploration policies.

By decoupling the process of evaluating novelty and locating states, their approach permits a more
consistent training environment and yields more diverse data collection. Thus, they find that data-
based unsupervised RL can provide uniform coverage data that can be applied effectively for down-
stream offline RL.
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Skill-Based Unsupervised RL Skill-Based unsupervised RL methods generally involve maxi-
mizing mutual information between states visited and skills. In Active Pretraining with Successor
Features (APS), Liu & Abbeel (2021) sample successor features w from a uniform random ball.
These successor features are intended to represent a parameterization of latent skills, and are used in
the Q function representation Q(s, a, w) = ψ(s, a, w)Tw for critic network ψ. The intrinsic reward
in APS is the mutual information objective

max I(s; z) = maxH(s)−H(s|z)

The entropy of the states H(s) is computed empirically through a particle filter, and the conditional
entropy term −H(s|z) is maximized by maximizing the lower bound Q(s, a, w).

Laskin et al. (2022) do a similar approach in Contrastive Intrinsic Control (CIC) and instead max-
imize I(τ, z) = H(τ) − H(τ |z) where τ = [ϕ(s), ϕ(s′)] is the concatenation of state encodings
from ϕ. CIC also slightly differs from APS by directly sampling z from a uniform random ball,
and they use the fact that the negative conditional entropy −H(τ |z) can be bounded from the cross
entropy between τ and z, which can easily be calculated. Both APS and CIC are methods that thus
allow policies to learn latent skills developed through environment interactions.

3 METHODS

3.1 DATA COLLECTION

We compare 5 different data collection methods, evaluating both the quality of the data using intu-
itive metrics, and the success rates of offline RL models trained on the data.

Random Actions As a baseline, our first method of data collection is taking random actions. In
this method, we query our simulator environment for a random sample from the current action space
and perform the sampled action. This approach involves no online learning during the data collection
process.

Random Network Distillation We also construct a baseline for simple intrinsic motivation using
Random Network Distillation (RND). Inspired by the approach outlined by Burda et al. (2018),
we randomly initialize two neural networks that take a hindsight observation as input, and train one
network to match the outputs of the other using a mean-squared-error loss. Actions are selected
using Proximal Policy Optimization (PPO) as outlined in Schulman et al. (2017), trained on the
loss between the RND models. We slightly modify the original implementation from Burda et al.
(2018) by discarding extrinsic rewards and training only on the RND rewards, as well as removing
the normalizer for the RND rewards. For this reason, we refer to this intrinsic motivation baseline
as “Vanilla RND” in this paper.

Hindsight Goal-Conditioned Reinforcement Learning We implement the Hindsight Goal-
Conditioned Reinforcement Learning (GCRL) data collection approach introduced by Endrawis
et al. (2021). Empirically we found that the TD3 backend led to very poor exploration policies, so we
differ from their method by instead using the Soft Actor-Critic (SAC) algorithm defined by Haarnoja
et al. (2018). Moreover, whereas Endrawis et al. (2021) only uses being exactly in the same state as
a boolean reward for the GCRL agent, we found that the exploration benefited from reward shaping
based on the euclidean distance to the goal. That is, we have rintrinsic(s, g) = 1{s=g} + λ||s − g||2
for some coefficient λ.

Active Pretraining with Successor Features We employ the approach for APS used in Liu &
Abbeel (2021) closely, using the same DDPG Lillicrap et al. (2019) backbone with additional
encoders for sucessor features. We empirically found that the best training schema was to train on
batches sample uniformly from a small replay buffer. This mode of hindsight replay is so that the
training is relevant to the current agent but not too uniform from the concurrent skill composition.

Contrastive Intrinsic Control For CIC Laskin et al. (2022), we use the same DDPG backbone
as in the described approach, and do the same modification to the training schema as in APS.
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3.2 OFFLINE LEARNING

Implicit Q-Learning Our offline learning phase is identical for all training datasets, regardless of
task or amount of expert data. We use Implicit Q-Learning (IQL), proposed by Kostrikov et al.
(2021), which uses expectile regression to estimate Q-values without evaluating any state-action
pairs outside the dataset. Specifically, we use the IQL implementation provided in d3rlpy, an open-
source offline reinforcement learning library by Seno & Imai (2022).

4 EXPERIMENTS

4.1 META-WORLD ENVIRONMENT

Figure 2: Sample renderings of the MT10 task environments from Meta-World Yu et al. (2019).
These environments are intended for multi-task, mult-goal learning, with each task class having 50
variants with different goal positions.

We conduct all our experiments in the Meta-World simulator Yu et al. (2019). Meta-World is
an open-source simulated benchmark for multi-task and meta-reinforcement learning consisting of
50 distinct robot arm manipulation environments. We focus our work on the MT10 subset of these
environments, which consists of 10 task classes with 50 variants of each task class. Each task variant
involves a unique goal state. See Figure 2 for sample a rendering from each task environment.

In Meta-World, the observation space ot is represented as a vector of 39 components, arranged as
ot = [ste, s

t
o1 , s

t
o2 , s

t−1
e , st−1

o1 , st−1
o2 ,xgoal] ∈ R39

where ste denotes the state of the end effector at timestep t; stoi denotes the state of the ith object in
the environment at timestep t; and xgoal is a task-dependent representation of the goal state, such as
the target position. The detailed definition is as the following:

ste = [xte, y
t
e, z

t
e, δ

t
e] ∈ R4

stoi = [xtoi , y
t
oi , z

t
oi ,q

t
oi ] ∈ R7

xgoal = [xgoal, ygoal, zgoal] ∈ R3

where xtk, y
t
k, z

t
k are the 3D Cartesian coordinates of object k at timestep t; δte measures how open

the gripper is; and qt
oi is the Quaternion of the ith object at timestep t. If only one object is relevant

to the current task, sto2 consists of all zeros.

To solicit changes in state, the controller model can perform an action with 4 numerical components,
arranged as

a = [∇xe, τ ]
where ∇xe ∈ R3 is the gradient of the position of the end effector, and τ ∈ R is the torque applied
to the gripper.

Lastly, for each (ot,at) pair, the model receives a real-time reward signal r ∈ [0, 10], which is
uniquely defined for each task.

5



4.2 UNSUPERVISED DATA COLLECTION

Figure 3: A PCA analysis of data collected by the 5 methods on the task “button press.” For this
visualization, we compute the principal components of the entire set of observations ot ∈ R39 from
all data collection methods. We then project the observations from each method independently onto
the two largest principal components, labeled here as “PC 0” and “PC 1.” We postulate that the
3-dimensional components corresponding to spatial positions contribute to the apparent cubic shape
of the projected observations, as the physical bounds of the simulator form a rectangular prism.

For each Meta-World task, we collect training data using the unsupervised data collection methods
introduced in the previous sections. For each of the 50 possible goal locations, 40 trajectories of
500 steps are collected, for a total of 1 million data samples per environment. A visualization of the
collected data can be found in Figure 3.

Because the plotted observation vectors ot include 3-dimensional position attributes, we anticipate
that the locations of points in the visualization reasonably correspond to physical locations within
the spatial bounds of the Meta-World simulator, and that the apparent density of points in Figure 3
correlates with the density of samples at that physical location.

Under the above assumption, we observe that Hindsight GCRL collects state samples that somewhat
resemble random actions and are much less uniformly distributed than Vanilla RND, APS, or CIC.
We also note that Vanilla RND tends to concentrate in the corners of the state space, which may indi-
cate policy collapse due to the continuously changing reward landscape. By qualitative observation
alone, APS and CIC appear to yield the most uniformly distributed datasets, with only slight bias
towards the center of the state space, where the button is often located. It is difficult and unreason-
able to determine the quality of the data from visualizations alone, so we turn to more fundamental
metrics for a more comprehensive evaluation of each data collection method.

4.3 PERFORMANCE OF OFFLINE RL

We use IQL Kostrikov et al. (2021) to train an offline RL model on the collected data. For each
task and the collected data, we train the model for 5× 105 steps with a mini-batch size of 256, actor
learning rate of 3× 10−4 and critic learning rate of 3× 10−4.

4.3.1 UNSUPERVISED COLLECTED DATA

Random Vanilla RND Hindsight GCRL APS CIC

Avg Success Rate 58.4% 50.8% 49.2% 60.2% 61%

Table 1: Success rate of offline IQL models trained on data collected by each method, averaged
across the 10 task environments.

As a baseline for our experiments, we first train offline IQL models for each task environment with
only the data collected by our five unsupervised methods. We evaluate these models by their success
rates across all 50 variants of task environments, see Figure 4. Although models trained by data
collected by all five methods can hardly succeed in some complex tasks such as “pick place”, “peg
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Figure 4: Success rate of model trained with unsupervised data collection.

insert side”, and “push”, data collected by CIC and APS can produce a higher success rate in most
of the remaining tasks. In addition, CIC achieves the most stable performance on the 7 easier tasks,
while the other 4 methods produce a significantly low success rate on specific tasks. For example,
Random only achieves 24% success rate on “button press”.

In Table 1, we list the average success rate of each method in the 10 task environments. CIC achieves
the best performance overall. APS is slightly worse than CIC, but still performs better than Random
exploration. Vanilla RND and Hindsight GCRL have the lowest overall success rates, below even
our random exploration baseline.

4.3.2 INCORPORATING EXPERT DEMONSTRATIONS

Figure 5: Success rate of the model trained with data incorporated by different numbers of trajecto-
ries from expert demonstration data.
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One of the primary goals of our study is to evaluate how the amount of expert demonstration data
affects the performance of downstream offline models. To this end, we combine the data collected
from our 5 methods with varying numbers of expert demonstration trajectories. We conduct ex-
periments on four representative environments: “reach”, “window open”, “button press” and “pick
place”. Figure 5 shows the success rates of offline IQL models trained with 1, 5, 10, 25, and 50 ex-
pert demonstrations, as well as the same unsupervised-only baseline model described in the previous
section.

In general, APS outperforms other methods when combined with expert demonstration data. On
the “button press” and “window open” tasks, APS combined with just 10 expert demonstration
trajectories can reach a nearly 100% success rate, while most other methods require 25 or even 50
trajectories. On “pick place,” one of the most difficult tasks, combining the unsupervised data with
expert demonstrations can allow the trained models to achieve non-zero success rates. Combined
with 50 expert trajectories, APS can produce the highest success rate on this complex task.

We can further observe that, when combined with sufficiently many expert demonstration trajecto-
ries, virtually all models can achieve an equivalent or higher success rate than unsupervised-only
models, and in most cases this increase correlates with the number of expert demonstrations. How-
ever, one major unexpected result is that incorporating expert demonstration data can significantly
harm the performance of models in the very few-shot case. For example, on the task “window open,”
the model trained on Hindsight GCRL achieves a 52% success rate using only the unsupervised data,
but plummets to 10% when combined with only a single expert demonstration trajectory. To con-
sider a possible cause for this counter-intuitive relationship, we recall how our unsupervised data
contains 106 total steps of relatively low extrinsic reward uniform exploratory data, whereas each
expert demonstration is 500 steps of high extrinsic reward and explicitly directed trajectories.

When we train the IQL model on these two different sources of data, the gradient updates between
unsupervised and expert data are inherently different. Relating to the concepts in Rashidinejad et al.
(2023), we can view few-shot expert data as out-of-distribution compared to the learning process
conditioned on the significantly more numerous unsupervised data. In general Rashidinejad et al.
(2023) find that mixing these data sources is fine as long as the distribution from both sources
is well-represented and/or the algorithm explicitly allows for differing data source inputs during
training. So for the case of insufficient expert demonstrations, the training algorithms receives an
out-of-distribution signal that is not well represented across many goals, and the learning process
is thus unstable and can lead to poor policy performance on some goals. In contrast when we have
enough expert demonstrations, the model can incorporate the complete distribution of diverse expert
trajectories and properly combine the expert and unsupervised data to create generalizable policies.

4.3.3 ABLATION STUDY: MULTI-TASK LEARNING

In this ablation study, we train a single multi-goal, multi-task model with data collected from each
unsupervised method on all 10 task environments. We encode the environment by concatenating its
integer index, in the range 0 to 9, to the observation as the input to the model.1

The success rates of the multi-task models on each environment are illustrated in Figure 6, and
the average success rates across all tasks are reported in Table 2. We can observe that the perfor-
mance of all 5 methods is worse than that of models trained independently by environments. Most
multi-task models even fail on environments where an individual model can achieve a high success
rate (e.g. “window open”, ‘window close”, “door open”, and “drawer open”). Two exceptions are
models trained on data collected by APS and CIC, whose average success rates outperform other
methods by a clear margin, see Table 2. APS still achieves a high success rate on the environment of
“window open” and “window close”, while CIC outperforms all other methods on “window close”
and “drawer open”. Data collected by Vanilla RND and Hindsight GCRL is less efficient to train a
multi-task model as their success rate on most tasks are extremely low.

1In a separate experiment, we trained the same model using a one-hot encoding of the environment. We
found that directly using an integer index, despite the task index having no real metric relationship, resulted in
significantly better performance, so we report those results in this paper.
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Figure 6: Success rates of multi-goal, multi-task models trained on unsupervised data from all 10
tasks. One model is trained and evaluated for each data collection method.

Random Vanilla RND Hindsight GCRL APS CIC

Avg Success Rate 23.2% 18.4% 18.0% 40.6% 38.8%

Table 2: Average success rates of multi-task, multi-environment models trained on unsupervised
data from all 10 tasks. One model is trained and evaluated for each data collection method.

4.4 DISCUSSION

Figure 7: Extrinsic total episode rewards encountered during different data collection approaches.
The 30-episode moving average is highlighted, and the episode rewards greater than 500 are the
emphasized hollow dots.

In Figure 7, we plot the total episode extrinsic reward each unsupervised data collection algorithm
encounters during the exploration process for ”Button-Press”. We notice that the most represented
high episode rewards are for Vanilla RND, APS, and CIC. When taking a look at the downstream
performance of these methods without expert data in Figure 4, we can see that APS and CIC perform
well, but not Vanilla RND. We suspect that part of the Vanilla RND poor performance can be seen
in the amount of extrinsic episode rewards being close to 0, as indicated by the blue line being at the
bottom of the plot. While seeing very low reward can be useful to determine incorrect paths in the
downstream offline learning process, having a significant proportion of trajectories with very low
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reward here is likely indicative of poor exploration with unwanted clustering. This is confirmed by
Figure 3 as well.

Figure 8: Spearman correlation ρ between aggregate dataset extrinsic reward, state, and action statis-
tics, and the resulting IQL model success rate over all tasks and all data collection methods.

Moreover, we analyze the Spearman correlation between dataset statistics and offline RL success
rate in Figure 8. We can see that extrinsic reward measures correlate very well with downstream
performance for all data collection methods, environments, and expert data settings. In particular,
the standard deviation of rewards and 90th percentile of rewards have the strongest correlations, sug-
gesting that containing diverse rewards along with having a top 10th percentile of sufficiently high
reward steps is important for downstream success. These two metrics broadly relate to data diver-
sity and sufficiently successful trajectories, desirable dataset attributes as explained in Rashidinejad
et al. (2023).

Of note is also the negative correlations for mean distance to the goal position and action magnitude.
This informs that trajectories too far from the goal are likely not useful, and that exploration policies
with actions that vary too greatly can lead to poor training data, so future applications would need
to keep this in mind.

5 CONCLUSION

We compare five different unsupervised data collection methods by measuring the performance of
downstream offline RL models. Our result shows that CIC achieves the best performance when no
expert demonstration is available. We further find that augmenting unsupervised data collection with
expert demonstrations can be beneficial in a multi-task and multi-goal setting, on the condition that
the expert data maintains a relatively unbiased distribution over the target tasks. An ablation study
on training a multi-task model with only the unsupervised data shows that such a model performs
worse than training a single model per each task, regardless of the data collection method used. The
multi-task models trained by CIC and APS data perform significantly better than other methods,
indicating that the data collected by these two methods are more generalizable to multiple tasks and
goals.

6 CONTRIBUTIONS

George: I implemented and ran data collection scripts for Hindsight GCRL, APS, and CIC. I helped
with running training and evaluation for a few of the offline RL evaluations, and significantly con-
tributed to the ideation of the project in general. I also generated the extrinsic reward and dataset
feature correlation plots and helped with creating the poster and report.

My contributions differed from the proposal in that the Endrawis et al. (2021) approach did not
work that well, so I modified hindsight GCRL to use SAC and also implemented the APS and CIC
methods in addition. Moreover, we focused on multi-task and multi-goal generalization rather than
transfer learning as in the proposal.
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Jared: I implemented and ran the data collection script for Vanilla RND. I also produced the PCA
visualization for the unsupervised data, as well as helped run training for some of the offline IQL
models and helped create the poster and report.

Unlike the proposal, which suggested the use of a pretrained model for data collection, our final
project did not involve any transfer learning, so no such pretrained model was needed. Furthermore,
we found that TD3 performed poorly as the backend model for Vanilla RND, so I implemented the
PPO algorithm from Schulman et al. (2017) to replace it.

Jianhao: As planned in the proposal, I set up the Meta World simulator. I implemented offline IQL
training, as well as the evaluation of the trained RL models. I ran most of the offline IQL training
and evaluations, and produced the plots related to the success rate of the trained model. I also helped
to make the poster and the report.

In addition to the planned proposal, we decided to further study the effect of multi-task RL. There-
fore, I also implemented and conducted the multi-task IQL training and evaluation. I also conducted
experiments of using one-hot encoding to concatenate the task condition, although we didn’t report
its result since it performs worse than index encoding.
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