
Light Culling Methods for Real-time
Rendering Applications

Jared Watrous

October 24, 2024

Abstract

In real-time rendering applications that target realistic, high-fidelity output, light baking is the predominant solution in
most modern pipelines. However, for scenes with many light sources whose properties (such as position or color) change over
time, dynamic lighting at scale remains the primary method of rendering. As modern lighting models are computationally
expensive, light culling is often used to reduce the number of per-pixel light computations. This paper surveys a variety of
these methods and compares their performance benefits against their visual disadvantages to foster better intuition about the
optimal use cases for each method.

Introduction

Real-time rendering applications for video games,
film, concept visualization, and other forms of media
often target visually realistic output with convinc-
ing materials and lighting. Many modern render
pipelines rely heavily on baking, where visual ef-
fects such as lighting are precomputed offline and
presented in a highly optimized format at runtime.
These approaches can lead to very high-fidelity re-
sults, but they inherently create limitations in the
types of scenes that can be rendered. Light baking,
for instance, often relies on the assumption that light
sources are static in position, direction, color, and
even brightness, and varying any of these attributes
can be difficult or infeasible under some architectures.
As such, in applications that wish to change these
properties frequently, it may be desirable to process
the lighting dynamically, where the contribution of
each light source is recomputed every frame.

Light Culling. Compared to baked lighting, dy-
namic lighting is expensive to render. In a trivial
pipeline, render time scales linearly with the number
of lights, as each rasterized pixel sums the contribu-
tion of every light source in the scene. Light culling
is the process of pruning these light computations by
deciding which ones are necessary for high-fidelity
output. Most light culling algorithms rely on the con-
cept a light volume, the region of space in which a
given light source is assumed to have non-negligible
contribution. This paper focuses primarily on simple
point light sources, where the light volume can be
defined as a simple bounding sphere. To determine
its radius, we call that light attenuation follows the
inverse square law:

Attenuation =
1

distance2

Figure 1: Two light volumes visualized as polygonal spheres
in the render engine used for this project, using an attenuation
threshold of 0.3. In practice, a smaller attenuation threshold
would be more typical for light culling; for evaluation, this paper
uses a threshold of 0.02. Image contrast is increased for clarity.

In this paper, we assume point lights follow exactly
this inverse-quadratic attenuation. Following the
above formula, we can easily derive a lower bound
on the radius of the light’s influence given some
attenuation threshold:

Radius =

√
|Light|

Threshold

The light culling methods surveyed in this paper
treat the above spherical light volume as a black-
box definition and does not account for any other
information about the light.

Pipeline Architectures

In general, most render pipelines can be placed into
one of two categories.

Forward Rendering. Forward renderers directly
rasterize the geometry data to an output image, often

either to the screen itself or to some intermediate
framebuffer for post-processing. In forward render-
ing, typically only one pass of fragment shaders are
executed, in which materials are evaluated and all
light computations take place, including light culling.
Optionally, some pipelines may choose to perform
a depth pre-pass, where all the geometry is drawn
once without a fragment shader (or with a very sim-
ple one) to fill the depth buffer, and then a second
time to fully compute the output image. The bene-
fit of a depth pre-pass is the reduction of overdraw,
when a pixel is (expensively) drawn to more than
once.

Deferred Rendering. The other category of
pipelines, deferred renderers [1], add a layer of in-
direction by first rendering the scene’s geometry to
a “G-buffer,” a temporary intermediate buffer that
stores positions, normals, and material attributes for
each pixel. In a second pass, these geometry compo-
nents can then be read back and combined to produce
an output image. Excepting their limitations (i.e.
transparent objects), deferred renderers effectively
eliminate overdraw by only computing lighting for
pixels that are guaranteed to be visible in the out-
put image. By decoupling material evaluation from
lighting, it also permits lighting computations to be
performed on arbitrary regions of the image.

Many light culling algorithms can be integrated
into both forward and deferred render pipelines.

Principles and Constraints

In surveying light culling methods, this paper strives
to compare them with respect to a set of practical
principles and constraints that (ideally) should be
relevant to most use cases for the algorithms.

Net-Nonnegative Performance. Ideally, a light
culling algorithm should lead to reduced frametime
on typical scenes where lighting is of particular con-
cern. In contrast, a light culling method that is typi-
cally slower than simply computing every light pro-
vides no value to the application. Applications with
few or static lights may not opt for large-scale dy-
namic lighting, so we are particularly interested in
the performance as measured on scenes with lots of
dynamic light sources.

Scene-Agnostic. Ideal methods should not need
adjustment when moving from scene to scene, and
should not depend on any of a scene’s contents other
than light volumes and the geometry to be illumi-
nated.

Transparent to the Artist. The artist should not
have to consider light culling when designing a scene
for the render engine.

Unbounded Number of Lights. Following from
transparency, an ideal algorithm imposes no hard
limits on the number of light sources in a scene.
Hardware limitations such as memory usage are ex-
empted.

Minimal Visual Artifacts. Light culling inherently
imposes approximations, as it assumes a light volume
is representative of a light’s influence. As such, visual
artifacts are plausible with many algorithms. An
ideal algorithm minimizes these artifacts as much as
possible to maintain the fidelity of the output image.

The purpose of this paper is to compare various
light culling methods with respect to these principles
and constraints.

Methods

The following methods were considered in this sur-
vey. Where possible, both forward and deferred ren-
derers were evaluated.

No Light Culling. In this baseline method, no light
culling was used. During the lighting phase in frag-
ment shaders, the shader iterated over every light
source in the scene and added its contribution to the
output pixel.

Bounding Sphere. Before computing a light’s con-
tribution, the fragment shader first checks whether
the current pixel’s position is inside the bounding
sphere of the light volume. If so, the shader com-
putes the light as normal; if not, the shader skips the
light source. In this method, the fragment shader
still iterates over every light source, but only com-
putes the subset of lights whose volumes contain the
current pixel.

Raster Sphere. Unique to deferred renderers, this
method rasterizes each light volume as a world-space
sphere [2]. In the sphere’s fragment shader, the G-
buffer is read and used to compute the contribution
of the light associated with the sphere. Additive
blending is then used to combine the results of all
rendered spheres from every light source. To prevent
the light from disappearing if the camera enters its
light volume, front-face culling may be used to only
render the interior of the sphere. As an additional
optimization, “greater-than-or-equal-to” depth test-
ing can be enabled, which only draws pixels where

2

the light volume’s far bound is behind some existing
geometry (i.e., there exists some geometry inside the
light volume at that pixel.) The Raster Sphere method
benefits from only computing the light source for ex-
actly the pixels contained in its light volume, and
avoids excess loop iterations in other pixels. The
tradeoff is that extra geometry is rendered, and es-
pecially if the rendering backend is serial, this may
become a bottleneck when there are many lights.

Clustered Rendering. This method is an extension
of tiled rendering. In tiled rendering [3], the out-
put image is divided into screen-space voxels called
tiles. As a per-frame preprocessing step, interesec-
tions between all light volumes and each tile are
computed, and a per-tile list of intersecting lights is
generated. This is often done in a compute shader
on the GPU. During rendering, the fragment shader
determines which tile the current pixel is in, then
queries that tile for the list of lights that intersect
it. Clustered rendering [4] extends this approach
by additionally subdividing the camera frustum in
the depth direction, yielding 3-dimensional clusters
rather than 2-dimension tiles, and the rest of the al-
gorithm is identical. This approach permits directly
looping over lights in the fragment shader without
redundant iterations, and assigns lights to these lists
in an automated, parallelizable manner.

One technical limitation of the clustered render-
ing implementation evaluated in this paper is that,
due to the nature of OpenGL’s buffer allocation,
there is a hard-coded limit on the number of light
sources that can influence each individual cluster.
This conflicts with the principle that an ideal al-
gorithm should support an unbounded number of
lights, and thus is a significant disclaimer for this
algorithm. Nevertheless, because it still imposes no
scene-level limitations, and the likelihood of hitting
the per-cluster maximum is relatively low in natural
scenes (and such an event can be handled gracefully
by simply ignoring any lights past the maximum),
this paper still considers the method to be viable
option for many applications.

Implementation

All four methods discussed above were implemented
into an existing lightweight rendering framework
written in C++17 with an OpenGL backend.1 No
light culling, Bounding Sphere, and Clustered Ren-

1 This lightweight framework is an old unfinished repo of mine
that I repurposed for this project. It already supported scene
graphs, asset and texture loading, and simple camera controls.
For this project, I implemented complete forward and deferred
render pipelines, as well as all of the described light culling
methods.

dering were integrated into an original forward ren-
der pipeline, and all of these plus Raster Sphere were
integrated into a deferred render pipeline. The for-
ward render pipelines uses a depth pre-pass. The
Raster Sphere method uses “greater-than-or-equal-to”
depth testing. Clustered rendering uses subdivisions
of 48 by 27 by 24 (where each screen-space tile is 40
by 40 pixels at 1080p resolution) and has a maximum
of 128 lights per cluster. The compute shader for
clustered rendering uses a bounding box approxima-
tion to test frustum-sphere intersections as described
in [5]. In all cases, the attenuation threshold used to
compute light volumes is 0.02.

Lighting Model. Lighting calculations were per-
formed using a Physically-Based Rendering (PBR)
model with a Cook-Torrence BRDF [6].

Non-priorities. The render engine used for this
project does not support any visual effects beyond
those described here, with the exception of basic dy-
namic range and gamma correction. Specifically, it
does not support shadows, frustum culling, or any
screen-space effects such as reflections or ambient
occlusion.

Clay Renderer. As a control, a “clay” render
pipeline was also implemented. This pipeline, sepa-
rate from the primary forward or deferred pipelines,
is a bare-bones forward renderer that rasterizes the
geometry to the screen without performing any com-
plex operations in the fragment shader. Rather, it
simply draws a solid-color scene with no textures
and only a constant-time Phong lighting model (with
a false view-space directional light.) The purpose of
this control is to gauge the performance of the boiler-
plate render engine without confounding it with the
light computations.

Evaluation

To evaluate the performance of the light culling meth-
ods, I prepared a test scene using PBR assets re-
leased under the CC0 license and a fixed camera
trajectory consisting of 1000 frames. I also fixed 7
“spawn points,” bounding cylinders in which lights
may spawn at program execution.

During evaluation, the program is parameterized
with a set number of lights. Each light is spawned
by selecting a “spawn point” uniformly at random,
choosing a location inside the bounding cylinder
uniformly at random, and choosing a color with
uniformly random hue and saturation. The program
then renders each of the 1000 frames of the camera
trajectory in sequence and displays it in a windowed

3

Figure 2: Average recorded frametimes of each light culling method with different numbers of lights.

application. Frametimes are recorded, including the
execution time of all boilerplate code, such that the
sum of all frametimes equals the wall-clock time of
the program’s execution. VSync is disabled during
evaluation. All benchmarks were recorded on the
same computer with an AMD Ryzen 5900X 12-core
processor and an NVIDIA RTX 3080 GPU.

Figure 2 presents the average recorded benchmarks
of each method with the number of lights ranging
from 0 to 1500. As one would likely intuitively expect,
the runtime of each algorithm increases linearly with
the number of lights. All methods are bounded below
by the clay renderer, and the two methods (forward
and deferred) without light culling are the slowest.
The Bounding Sphere methods offer a very significant
speed-up, cutting the overhead of light computation
nearly in half. Raster Sphere, in rendering more ge-
ometry, delivers slightly less of a speed-up. Notably,
with both Bounding Sphere and without light culling,
the deferred renderer reached higher performance
(lower frametime) than the forward renderer. In both
renderers, clustered rendering greatly outperformed
all of the other methods, reaching up to 1500 lights
at a comfortable 10 ms per frame (100 frames per
second.)

Failure Modes: Reflective Surfaces

Recall that all of the light culling methods explored
in this paper rely on the assumption that any pixel
outside a light volume is only negligibly influenced
by that light source. In a PBR lighting model, this as-
sumption may hold well for dielectric materials with
sufficiently high material roughness. But for metallic
materials or dielectric materials with low roughness,
the assumption can be easily broken. A trivial exam-
ple is a perfect mirror, where pixels on the mirror can
be illuminated by light sources arbitrarily far away.
In practice, this can lead to significant visual arti-
facts when light culling methods are used. Figure 3
presents some examples of these artifacts found with
the light culling methods evaluated here. Reflective
surfaces are further discussed in the Further Work
section.

Conformance to Principles and
Constraints

Each of the light culling methods explored here
are naturally scene-agnostic and easily achieve net-
nonnegative performance. With the exception of clus-
tered rendering, they are also completely transparent
to the artist and support an unbounded number of
lights. Although the clustered rendering implemen-

4

Figure 3: Artifacts produced by light culling. (a) shows some light sources disappearing in the reflection as the camera moves around
the scene. This phenomena can be observed with both Bounding Sphere and Raster Sphere culling (here Raster Sphere is visualized,
and the red circles were added to highlight the differences.) (b) shows grid-shaped tiling artifacts on a reflective surface, visible in
Clustered Rendering (image contrast increased for clarity.)

tation has an implicit cap on the number of lights
per cluster, as described in the Methods section, hit-
ting this maximum is likely to be rare. An artist
may need to be conscious of grouping hundreds of
light sources close together if they wish to completely
avoid artifacts, but this constraint is somewhat un-
natural and a typical scene is unlikely be problematic
under this limitation. As for visual artifacts, none
of the methods are perfect, especially with reflective
surfaces. However, the Bounding sphere method in
particular, if it produces artifacts at all, is likely to
produce smooth, circular banding effects, which may
be less noticeable or distracting than tiling artifacts
possible with clustered rendering.

Future Work

The light culling methods explored in this paper are
fairly well-known methods to reduce the overhead of
dynamic lighting. Clustered rendering in particular
is used by most game engines in practice. Future
comparative work could include expanding to more
light culling methods, such as stochastic light culling.
Research in the area, however, seems to have shifted
towards the integration of dynamic lights into baked
systems, such as with Activision’s UberBake [7].

Mitigating Reflective Surfaces. The issue of reflec-
tive surfaces stems from the fact that the light volume
assumption is inherently flawed, as it assumes prop-
erties about the materials of the illuminated geometry.
If some lower bound on the reflectivity of all mate-
rials was known, then the light volume assumption
could be fine-tuned to a particular scene by adjusting

the threshold accordingly. But even this approach
would have its issues; not only are the material prop-
erties of a scene generally unknown and (in the spirit
of scene-agnosticism) hard to efficiently evaluate, if
all light volumes were determined with respect to a
scene-level lower bound, then a single highly reflec-
tive material, however small, could inflate all light
volumes to an arbitrarily large size, killing the benefit
of light culling. In effect, the introduction of material
properties into the equation transforms the light vol-
ume definition from a light-dependent problem to a
light-and-material-dependent problem.

Recall that in clustered rendering, we consider a
single cluster (a slice of a frustum in 3-dimensional
space) to be representative of all screen-space pixels
in that cluster. In other words, light volumes that
intersect the cluster are accumulated into a single
list such that every pixel in the cluster computes the
same set of lights. To transform this setup into a
material-dependent solution, one option is to simi-
larly accumulate material properties within a cluster.
For example, consider a deferred render pipeline. Af-
ter rasterizing geometry to the G-buffer, but before
rendering to the screen, a compute shader is run
to compute the light lists for each cluster. In this
compute shader, all pixels inside the current cluster
are read from the G-buffer (that is, discarding pixels
outside the screen-space tile and outside the depth
range of the cluster.) The material properties for
these pixels, read from the G-buffer, are accumulated
into a summary of values (e.g., a lower bound on
reflectivity), and this summary is used to adjust the
light volumes of all lights when testing intersection
with the cluster.

The algorithm described above is only speculative,

5

Figure 4: Sample images from each light culling method presented in this paper, including the “Clay” control renderer.

but perhaps worthy of exploring in future work. It
still fails to address changes in lighting with respect
to viewing angle, and only benefits deferred render-
ers and scenes with dynamic lighting and reflective
materials.

Supplementary

Figure 4 shows sample screenshots from each light
culling method described in this paper. A full video
sample is available at:
https://drive.google.com/file/d/
1g5uZtsiuNaM2lRFc9fFTxfLeDlTR3Edu/view?
usp=sharing

The source code for this project is available on
GitHub:
https://github.com/thetruejard/cs348k_
project

References

[1] Jonathan Thaler. Deferred Rendering. Jan. 2011.

[2] Joey de Vries. “Deferred Shading”. In: (2015).
url: https : / / learnopengl . com / Advanced -
Lighting/Deferred-Shading.

[3] Takahiro Harada, Jay McKee, and Jason C. Yang.
“Forward+: Bringing Deferred Lighting to the
Next Level”. In: Eurographics 2012 - Short Papers.
Ed. by Carlos Andujar and Enrico Puppo. The
Eurographics Association, 2012. doi: 10.2312/
conf/EG2012/short/005-008.

[4] Ola Olsson, Markus Billeter, and Ulf Assars-
son. “Clustered deferred and forward shading”.
In: High-Performance Graphics 2012, HPG 2012 -
ACM SIGGRAPH / Eurographics Symposium Pro-
ceedings (Jan. 2012), pp. 87–96. doi: 10.2312/
EGGH/HPG12/087-096.

[5] Angel Ortiz. A Primer On Efficient Rendering Algo-
rithms Clustered Shading. Dec. 2018. url: https:
//www.aortiz.me/2018/12/21/CG.html.

[6] R. L. Cook and K. E. Torrance. “A Reflectance
Model for Computer Graphics”. In: ACM Trans.
Graph. 1.1 (Jan. 1982), pp. 7–24. issn: 0730-0301.
doi: 10.1145/357290.357293. url: https://
doi.org/10.1145/357290.357293.

[7] Dario Seyb et al. “The design and evolution
of the UberBake light baking system”. In:
ACM Transactions on Graphics (Proceedings of SIG-
GRAPH) 39.4 (July 2020). doi: 10/gg8xc9.

6

https://drive.google.com/file/d/1g5uZtsiuNaM2lRFc9fFTxfLeDlTR3Edu/view?usp=sharing
https://drive.google.com/file/d/1g5uZtsiuNaM2lRFc9fFTxfLeDlTR3Edu/view?usp=sharing
https://drive.google.com/file/d/1g5uZtsiuNaM2lRFc9fFTxfLeDlTR3Edu/view?usp=sharing
https://github.com/thetruejard/cs348k_project
https://github.com/thetruejard/cs348k_project
https://learnopengl.com/Advanced-Lighting/Deferred-Shading
https://learnopengl.com/Advanced-Lighting/Deferred-Shading
https://doi.org/10.2312/conf/EG2012/short/005-008
https://doi.org/10.2312/conf/EG2012/short/005-008
https://doi.org/10.2312/EGGH/HPG12/087-096
https://doi.org/10.2312/EGGH/HPG12/087-096
https://www.aortiz.me/2018/12/21/CG.html
https://www.aortiz.me/2018/12/21/CG.html
https://doi.org/10.1145/357290.357293
https://doi.org/10.1145/357290.357293
https://doi.org/10.1145/357290.357293
https://doi.org/10/gg8xc9

	Introduction
	Pipeline Architectures
	Principles and Constraints

	Methods
	Implementation

	Evaluation
	Failure Modes: Reflective Surfaces
	Conformance to Principles and Constraints

	Future Work
	Supplementary

