
Light Culling Methods for Real-time
Rendering Applications

Jared Watrous

Light Culling Methods

1. Background & Goals

2. Methods

3. Results

Real-time Rendering: Light Culling
For many pixels, some light sources will be negligible

Light is attenuated using the inverse square law:

Derive a bounding sphere of influence (“light volume”):

Choose a “threshold” such that any pixel outside “radius”
is negligibly affected

“Light Culling”: in the pixel shader, determine whether
the pixel should compute a light source

Principles & Constraints
An ideal light culling method satisfies the following constraints:

- At least as fast as no light culling

- Unbounded number of lights (no hard constraints)

- Scene-agnostic

- Transparent to the programmer/artist

- Minimal visual artifacts

Forward & Deferred Rendering
Forward rendering:

- Rasterize directly to the screen
- Simple, low memory overhead
- Optional Z-prepass to reduce overdraw

- (renders geometry twice)

Deferred rendering:

- First render material attribs to “G-buffer”
- Compute light sources in separate pass
- No overdraw in lighting pass
- More complex, high memory overhead
- Some features (transparency, AA) hard

Forward

Deferred

Light Culling Methods

1. Background & Goals

2. Methods

3. Results

No Light Culling

Just iterate over all light sources

Works for:

- Forward
- Deferred

for light in LightsList:
 color += computeLight(light)

Bounding Sphere

Before computing the light, check if the pixel is inside its bounding sphere

Still iterate over all the lights

Works for:

- Forward
- Deferred

for light in LightsList:
 if light.volume.contains(position):
 color += computeLight(light)

Raster Sphere

Render each light volume as a 3D sphere, use G-buffer to compute light

Only one light per shader evaluation

Renders more geometry (sequentially)

Works for:

- Deferred only

For each sphere:
light = LightsList[current_index]
color += computeLight(light)

Tiled Rendering *(Not implemented for this project)

Break the image into screen-space “tiles”

Find tile-light intersections first

Only compute lights in the tile

Works for:

- Forward
- Deferred

tile_index = getTileIndex(position)
for light in tiles[tile_index]:
 color += computeLight(light)

Clustered Rendering

Break the scene into 3D “clusters”

Find cluster-light intersections first

Only compute lights in the cluster

Works for:

- Forward
- Deferred

cluster_index = getClusterIndex(position)
for light in clusters[cluster_index]:
 color += computeLight(light)

Light Culling Methods

1. Background & Goals

2. Methods

3. Results

Implementation

- Written in C++17 with OpenGL

- Test scene uses CC0 assets

- Variable number of light sources

Control: “Clay” renderer

- Draws geometry without computing
any lights

Results

https://docs.google.com/file/d/1g5uZtsiuNaM2lRFc9fFTxfLeDlTR3Edu/preview

Performance

Artifacts: Reflective Surfaces
Reflective surfaces can arbitrarily extend the range of influence of lights

This can cause artifacts when reflective surfaces enter/exit a light volume

Open problem for future study

deferred-rastersphere forward-clustered-gpu

In Practice (Engine Defaults)

Unreal Engine 4/5: Deferred w/ clustered

Unity: Forward w/ clustered

Source Engine: Forward w/ clustered

Godot: Forward w/ clustered

Most mobile applications: Forward

Most VR applications: Forward

Figures & References

https://learnopengl.com/Getting-started/Hello-Triangle

https://learnopengl.com/Advanced-Lighting/Deferred-Shading

https://frederikboving.com/what-is-light-falloff-in-photography/

https://developer.unigine.com/en/docs/latest/objects/effects/volumetrics/volume_sphere

https://www.aortiz.me/2018/12/21/CG.html

https://medium.com/@lordned/unreal-engine-4-rendering-overview-part-1-c47f2da65346

https://www.gdcvault.com/play/1021771/Advanced-VR

Specs
Evaluations were performed with a Ryzen 5900X (12-core) and NVIDIA RTX 3080

