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Abstract—A natural limitation to the capturing of real-world images is the presence of blur and noise, resulting from camera motion,
lens intrinsics, hardware imperfections, low light conditions, or any number of sources. Many approaches exist for deconvolution, the
process of attempting to mitigate these artifacts, including direct inversion in the frequency domain, Wiener deconvolution,
half-quadratic splitting (HQS), and alternating direction method of multipliers (ADMM). The latter two of these approaches involve
hyperparameters, where different values give different deconvolved images, and tuning these hyperparameters well can be an
nontrivial and cumbersome. In this paper, we introduce three augmentations of the HQS algorithm that attempt to abstract away the
hyperparameter tuning process. Specifically, we apply backpropagation to optimize three learned models: first, a direct global
optimization of the HQS hyperparameters; second, a neural network hyperparameter predictor conditioned on the input image; and
finally, a neural network hyperparameter predictor conditioned on the intermediate state of each iteration. We show that all three
methods produce visually reasonable results and conclude that, with our training configuration, fine granularity prediction provides

diminishing returns.

Index Terms—Computational Imaging, Denoising, Inverse Problems

1 INTRODUCTION

In computational imaging, blurry and noisy images are
an inherent result of imperfect hardware and measurements.
Naturally, the topic of deconvolution arises with the ob-
jective of recovering a blur- and noise-free image from a
flawed observation. One potentially powerful approach is
the Half-Quadratic Splitting (HQS) method [1], which, de-
spite showing promising results, requires hyperparameter
tuning and heuristics to optimally deconvolve an image. In
this project, we explore three methods of learning these hy-
perparameters through automatic differentiation, including
direct global optimization, image-conditioned hyperparam-
eter prediction, and iteration-conditioned hyperparameter
prediction.

2 RELATED WORK
2.1 Solving inverse problems using optimization

Inverse problems such as denoising are extremely under-
constrained problems and trying to denoise images without
a prior will often lead to degenerate results as there are
multiple plausible solutions. Thus, we often see that image
priors, i.e. objective functions that dictate how we expect a
natural image to appear, are used to guide the optimization
process. A common prior used when solving the denoising
problem is the total variation (TV) regularizer which pe-
nalises gradients in images, encouraging sparse gradients
[2]. Using regularizers like TV along with a traditional
euclidean distance objective, it is possible to get reasonable
solutions to inverse problems by using optimization meth-
ods such as gradient descent [2] or adaptive optimization
methods such as ADAM [3]. Another line of work involves
breaking down the optimization problem into multiple steps
that can be efficiently solved with regularization constraints.
This line of work includes methods such as half quadratic
splitting (HQS) [1] and alternating direction method of mul-
tipliers (ADMM) [4] which have shown promising results in
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solving inverse problems. However, these methods require
hyperparameter tuning and we explore ways to automate
this hyperparameter search using data-driven methods in
our project.

2.2 Modeling optimization approaches using deep
learning.

Past work has explored using deep learning to model max-
imum a posteriori (MAP) optimization problems. By using
deep learning, methods are able to learn patterns from
data and leverage inductive biases encoded in the network
architecture to potentially make more intelligent decisions
during the optimization process. For instance, [5] proposed
a way to leverage information about image formation mod-
els into neural networks, and unroll the networks to solve
inverse problems. This is done by weight sharing in a neural
network and repeatedly applying the same network in the
different optimization steps. The paper presents promising
results on the deblurring and denoising tasks, showing how
using inductive biases or learning priors from data can help
us find better solutions to inverse problems.

2.3 Adaptations to HQS

There has been interesting work in ways to adapt HQS and
related methods to leverage learned priors. For instance,
there has been work [6] focused on proving fixed-point
convergence guarantees of the alternating direction method
of multipiers (ADMM) where the z-update steps leverage
denoisers that are learned neural networks, i.e. there is guar-
anteed to be convergence to a solution if the initialization
lies in a certain region under certain denoisers. Other work
[7] has explored modelling the different iteration steps of
ADMM using separately learned modules for each of the
update steps. However, there is still scope to explore ways
in which we can learn priors to predict hyperparameters for
existing iterative solutions to inverse problems. For instance,
hyperparameters such as p and A, present in both HQS and



ADMM, are often set by hand. By learning priors from data,
we can potentially learn task-specific values, or those of
even finer granularity, that lead to quicker convergence and
better performance in solving inverse problems. Through
our work, we hope to contribute towards the effective
selection of hyperparameters for HQS.

3 PROPOSED METHOD

We propose three different methods of augmenting the HQS
algorithm to learn hyperparameters using automatic differ-
entiation, each method increasing in relative granularity. In
all cases of backpropagation, we optimize using the AdamW
algorithm, and apply a mean squared error (MSE) loss
function on the pixels of the training image set.

3.1 Direct Global Backpropagation (“Vanilla™)

Our first approach, which we refer to as “vanilla,” is effec-
tively a baseline method with the standard HQS pipeline.
In this method, we define the hyperparameters p and A
to be learnable model parameters. We then backpropagate
through the unrolled computation graph of the standard
HQS algorithm, optimizing the parameters p and A to
minimize the error of the output image. We postulate that
this method is effectively equivalent to an automated hyper-
parameter sweep, where the same learned hyperparameter
values could be transferred to any standard HQS pipeline
and see equivalent results.

3.2

Our second approach introduces a predictor model which
takes an input image and outputs global predictions for the
hyperparameters p and A. Our predictor model is a fully
connected feed-forward neural network which predicts the
optimal values of p and A directly from the pixels of the
blurry input image. We hence refer to this approach as
“image-conditioned” or “per-image,” as the hyperparame-
ters p and )\ are dependent on the image being deconvolved,
but the same values are used across all iterations of the
HQS algorithm. To train the predictor neural network, we
unroll the compute graph of the HQS algorithm across
all iterations and backpropagate with the same pixel-space
MSE loss as our baseline approach. The gradients are then
used to update the predictor’s weights such that the final
output image of the algorithm is optimized to match the
ground truth image.

Image-Conditioned Hyperparameter Prediction

3.3 Image-Conditioned Per-lteration Hyperparameter
Prediction

Our final approach extends our image-conditioned method
by increasing the granularity of the hyperparameter predic-
tions. In this method, we use the same hyperparameter pre-
dictor neural network as described in the previous section,
which takes a blurry image as input and provides estimates
of the optimal hyperparameters p and A. In this method,
however, rather than predicting the hyperparameters once
at the start of the algorithm, we run the predictor model at
the beginning of each iteration, before the HQS z-update,
using the intermediate image x as input. As before, we
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unroll the entire compute graph of HQS, which this time
includes one pass through the predictor model for each
iteration, and backpropagate through the entire algorithm to
optimize the weights of the predictor model using a pixel-
space MSE loss on the output image.

For the first iteration of this approach, we provide as
input to the predictor model the initial prediction x of the
output image. In our implementation, this initial prediction
is an array of all zeros, indicating that the p and A values
used in the first iteration of this method is independent of
the input image. That is, although the second and later itera-
tions use hyperparameters predicted from the intermediate
image x, the first iteration always uses the same globally
predicted hyperparameters. We justify this design choice
with the observation that if the first iteration conditioned
on the input image, the per-iteration approach would be
a complete superset of the previously described image-
conditioned method, limiting the diversity of our explored
HQS augmentations.

4 EXPERIMENTAL RESULTS

We perform an ablation study examining how the choice
of regularizer, noise level, blur level and number of steps
during network unrolling affect denoising performance.

4.1 Ablation Study
4.1.1 Different Regularizers

We present quantitative results comparing different regu-
larizers including a pretrained denoising CNN, anistopric
TV (ani-tv) and isotropic TV (iso-tv) in Table 4.1.1 and
qualitative results in Figure 4. From the results, it is clear
that the denoising CNN significantly outperforms TV as a
regularizer, showing how important learned priors are in
inverse problems such as deconvolution.

[ Vanilla PSNR | Per-Image PSNR | Per-Iter PSNR

DnCNN 19.0386 19.1763 19.2469

Ani-TV 14.6589 14.6894 14.6993

Iso-TV 14.6589 14.6894 14.6993
TABLE 1

PSNR values for images generated by each of the three methods using
different regularizers: a denoising Convolutional Neural Network
(DnCNN), anisotropic Total Variation (Ani-TV), and isotropic Total

Variation (TV), with 6 0ise = 0.1, op1r = 2.5, and 5 HQS iterations.

4.1.2 Different Noise and Blur Levels

We present quantitative results comparing our proposed
methods across different noise and blur levels in Tables 4.1.2
and 4.1.2, and present qualitative results in Figures 5and 6.
We see that performance significantly drops as the standard
deviation of the noise or blur increases which correlates with
the task getting more challenging as seen qualitatively in the
input images.
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Fig. 1. Our image-conditioned HQS augmentation method, using a fully connected neural network to predict global hyperparameters p and X from

the initial input image.
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Fig. 2. Our image-conditioned per-iteration HQS augmentation method, using a fully connected neural network to predict hyperparameters p and A
at each iteration. In the first iteration, we use the initial image prediction =, which is an array of all zeros.

|| Vanilla PSNR | Per-Image PSNR | Per-Iter PSNR
on =0.01 24.8461 25.7526 25.8529
on =01 19.0386 19.1763 19.2469
on =1 12.6915 12.6700 12.6843
TABLE 2

PSNR values for images generated by each of the three methods using
different noise levels with standard deviations oy,0ise 0f 0.01, 0.1, and
1, with a DnCNN regularizer, oy, = 2.5, and 5 HQS iterations.

| Vanilla PSNR | Per-Image PSNR | Per-Iter PSNR
op =1 25.4636 25.5458 25.5074
op = 2.5 19.0386 19.1763 19.2469
op =5 14.4015 14.3945 14.4790
TABLE 3

PSNR values for images generated by each of the three methods using
different Gaussian blur kernels with standard deviations oy, of 1, 2.5,
and 5, with a DnNCNN regularizer, ,,0ise = 0.1, and 5 HQS iterations.

4.1.3 Different Number of Unrolling Steps

In our last ablation study, we examine the effect of unrolling
our network for a different number of steps and present
quantitative results in Table 4.1.3 and qualitative results

in Figure 7. From the results, we see a general trend that
unrolling the network for more steps performs better across
the methods showing the importance of unrollling for as
many steps as feasible.

[ Vanilla PSNR | Per-Image PSNR | Per-Iter PSNR

n=1 14.4812 14.6237 14.6018

n=>5 19.0386 19.1763 19.2469

n =10 19.1541 19.3271 19.3406
TABLE 4

PSNR values for images generated by each of the three methods using
different numbers of HQS steps with n = 1, n = 5, and n = 10, with a
DnCNN regularizer, o,,0ise = 0.1, and oy = 2.5.

4.2 Comparison with Baselines

After performing the ablation study, we now have the best
parameters for each method i.e. we get best results across
the board when unrolling the network for 10 steps and use
a deep neural network as the regularization prior. Thus, in
this section we use this configuration of models to compare
our proposed methods to traditional deconvolution meth-
ods such as inverse and Wiener deconvolution. We present
a quantitative comparison in Table 4.2 and qualitative



- .I;'ul .

w|u

HEEEENED
cloluleRlals=<
EENERNED

Fig. 3. Qualitative comparison of our examined methods with baselines.
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Fig. 8. Qualitative ablation study involving different regularisers, noise levels, blur levels and number of steps we unroll the network during training.

H Vanilla ‘ Per-Image ‘ Per-Iter ‘ Inverse Deconv. ‘ Wiener Deconv.

Test PSNR [[ 19.1541 | 19.3271 | 19.3406 |

3.1735 \ 11.7828

TABLE 5
Summary of PSNR values on the MNIST test set for images deconvolved by the best model for each examined method along with a Weiner and
Inverse deconvolution baseline. The noisy images from the MNIST test set have o,0ise = 0.1 and op;,,,- = 2.5 in this experiment.

results in Figure 3. From the results, it is clear that our
proposed approaches perform significantly better than both
the Wiener and the inverse deconvolution. Additionally,
we see the inverse deconvolution gives degenerate results
while Wiener results does a reasonable job but is unable to
reach similar levels of performance likely because it does
incorporate priors about natural images like we do in our
methods. Our work thus shows the potential of using data
to optimise hyperparameters for algorithms such as HQS
for solving inverse problems.

We also observe from the results presented in Table
4.2 and the ablation studies performed, that in general the
per-iteration methods performs better than the per-image
method and these are followed by the vanilla method.
Although the differences are small we do observe this trend,
and this is likely because the per-iteration method adapts
parameters at each step and thus should be able to lead
to better results compared to having a more rigid per-
image or global hyperparameters. The small difference in
the parameters do indicate that maybe there is no need to
find per-image or per-iteration parameters for these models
and simply using task-specific parameters may work well in

practice. Lastly, the difference in performance could also be
an artifact of the MNIST dataset which is relatively simple
to model and thus there is a need to evaluate this model on
more complex datasets and see if there are more significant
differences in the proposed methods.

5 CONCLUSION

Our results show a clear difference in quality between the
inverse deconvolution and Wiener deconvolution baselines
and our three HQS augmentations. The quality difference
across our three augmentations is much more subtle. Quan-
titatively, we see a consistent trend in which finer gran-
ularity hyperparameter prediction delivers slightly higher
PSNRs. Perceptually, however, we find that most examples
require close inspection to observe the differences between
the methods.

We draw from the observation that the MNIST dataset,
which our experiments were trained and tested on, is per-
ceptually fairly simple. We speculate that, while our results
hold for this data, training on larger and more complex
images could provide more variance in the perceptual qual-
ity of the output images, potentially offering more insight



into the benefits and drawbacks of each of our three HQS
augmentations.

We also acknowledge that the HQS algorithm is often
run for much longer, typically ranging from 20 to 50 iter-
ations for image deconvolution, as compared to our 1 to
10 iterations. Although we already observe our methods
quantitatively plateauing with the number of iterations,
we surmise that, combined with a more complex dataset,
increasing the number of iterations could bring the quality
comparisons closer to those of deconvolution algorithms
used in practice, offering a more practical analysis of our
approaches.

With the above in mind, we consider that simple global
hyperparameter optimization may be sufficient in practice,
with the footnote that this conclusion primarily applies to
our specific training configuration with MNIST and few
iterations. As we consider it beyond our compute limitations
at this time, we leave the exploration of scaling these ap-
proaches, with larger datasets and more iterations, to future
work.
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