

Per-Image

Deconvolution to reduce blur and noise from images is an inverse problem:

- Inverse Filtering: highly sensitive to noise
- Wiener Deconvolution: no inherent information about "natural" images
- HQS¹ and ADMM²: use a regularizer prior and require hyperparameter tuning

Hyperparameter tuning is expensive and annoying. How do we take advantage of approaches like HQS *without* hyperparameter tuning?

Methods

We developed data-driven approaches to model the global hyperparameters ρ and λ in the HQS algorithm:

- 1. Directly optimize global HQS hyperparameters
- 2. Learn hyperparameter predictor from the initial blurry images
- 3. Learn to predict hyperparameters from x in each iteration of HQS

multipliers". In: Foundations and Trends® in Machine learning 3.1 (2011), pp. 1–122.

Exploring Unrolled Optimization Samir Agarwala, Jared Watrous

Dept. of Computer Science, Stanford University

	Vanilla	Per-Image	Per-Iter	Inverse Deconv.	Wiener Deconv.	_
est PSNR	19.1541	19.3271	19.3406	3.1735	11.7828	_
nput	Vanilla Model	Per-Image Model P	er-Iteration Mod	el Inverse Deconv Wien	er Deconv GT	
			2			
	0	0	0			
	8	8	8		R	
	7	7	7		1	

PSNR 14.7

PSNR 14.7

PSNR 14.7