Spelke Object Segmentation with
Counterfactual World Modeling

Jared Watrous
CS468 Final Project Report

Abstract

Counterfactual World Modeling ['! (CWM) is a prospective foundation model that attempts
to unify many common computer vision tasks, including keypoint prediction, optical flow, and
segmentation, and offers a path to extend this framework to more 3D tasks such as novel
view synthesis and depth estimation. The latest iteration of this framework, Causal CWM
(CCWM), successfully implements these 3D extensions, but loses its original method of pre-
dicting object segmentation. In this paper, we propose an inference-time readout for Spelke
object segmentation with CCWM and demonstrate its viability on in-the-wild data.

1 Background

The concept of Spelke objects originates from cognitive scientist Elizabeth Spelke and her col-
leagues, who revealed that babies early in development learn to group visual elements only
when they move together when interacted with [”!. The tendency of two points in space to
move together is referred to as Spelke affinity, and a collection of points that move together in
space can be considered an independent grouping, or Spelke object. Note that this definition
is not perfectly well-defined, as Spelke affinity is not a symmetric relationship. For example,
an apple sitting on a plate is very likely to move if the plate moves; however, moving the ap-
ple itself does not necessarily mean the plate will move with it. For this reason, we consider
Spelke segmentation significantly distinct from other definitions of objects such as instance or
semantic segmentation. Computer vision work relating to Spelke objects is relatively limited,
but we observe that this definition is practically useful for many applications such as robotics,
and is relatively convenient to extract using certain formulations of optical flow .

2 Introduction

The field of computer vision includes many common tasks, such as optical flow estimation, depth
extraction, and object segmentation. Often times, these are delegated to specialized models
that excel at their particular task. However, especially since the advent of large language models
for natural language processing, interest in a general-purpose foundation model for computer
vision has grown significantly. In light of this motivation, Counterfactual World Modeling !
(CWM) arose as a prospective foundation model, and has shown itself to be especially promising
in its scalability.

CWM is based on a next-frame-prediction learning objective inspired by biological vision sys-
tems. Given the first frame of a video clip, rgb0, and some small subset of patches of a
subsequent frame, rgbl, CWM attempts to predict the entire second frame rgb1. Counterfac-
tual prediction, in which we provide false rgb1 patches to the model, allows us to reconstruct
RGB images as if the patches were factual. By, for example, moving RGB patches from rgb0

Spelke Object Segmentation with Counterfactual World Modeling

Index Tokens

/
Y

[rgb0 J + { (conditioning tokens) J — [rgb1 J

Figure 1: Sequence construction scheme for CCWM. Index tokens indicate to the model which
block to decode next, permitting arbitrary rollout conditioning and ordering.

to condition rgbl, we can produce images as if the object in the counterfactual patch had
moved. Furthermore, we can condition patches on the background to counterfactually induce
or prevent camera motion.

In a simple ViT-based model, [l it can be shown that this framework enables many useful
computer vision readouts. For example, to extract optical flow, we can perturb rgb0 at a point
and determine the point in rgbl that this perturbation most affects. Notice that, because
a ViT-based model is differentiable, we can instead use standard autograd tools to compute
the partial derivative of output pixels with respect to input pixels, tracking the correspondence
between the two frames. Furthermore, by counterfactually moving a single patch and measuring
optical flow of the entire image, we can extract rough estimates of Spelke object segmentations
at the given query patches. While these properties are useful, this ViT-based model exhibits
significant blurriness in its RGB predictions, especially when injecting camera pose information.
This is a natural result of using Lo pixel-space loss, which regresses the model to the mean
output and encourages blurring uncertain parts of the image. To mitigate this, we switch to
a next-token-prediction scheme, inspired by the success of large language models, and we refer
to this new model as Causal Counterfactual World Modeling (CCWM).

Tokenization Typical image tokenizers for vision-language models use a transformer archi-
tecture that allows information to flow freely between the tokens, losing spatial locality informa-
tion. Because spatial locality is vital to the CWM framework, we introduce a novel local patch
quantization scheme, in which image patches are independently tokenized using a lookup-free
quantizer (1, with no information from its neighboring patches. To reconstruct an image from
tokens, we use a fully convolutional decoder. In practice, we use a patch size of 4 pixels.

Sequence Construction To construct a sequence from a grid of tokens, we group the image
into 2-by-2 blocks of tokens. Each block is assigned an “index token,” a token that indicates
to the model which block in the image the following RGB tokens correspond to. With this
formulation, we can reorder the blocks in the sequence with any arbitrary permutation, allowing
us to inject arbitrary blocks as conditioning and choose what order to decode rgb1 blocks in.
We can also tokenize any other form of conditioning we choose, such as camera pose, and insert
it between rgb0 and rgbl in the sequence.

Current Models Currently, we have two different models trained. Our first model conditions
on rgb0 and a relative camera pose C, and predicts an optical flow image F. We define optical
flow images similarly to RGB images, with index tokens that allow arbitrary ordering, but using

Spelke Object Segmentation with Counterfactual World Modeling

E) E)

Figure 2: Sparse-to-dense optical flow prediction. By conditioning on camera motion (no motion
in this sample) and a counterfactual flow patch, we can use the rgb0 + C CCWM model to
predict a dense flow image.

a different quantizer. Our second model conditions on rgb0 and optical flow F to predict rgb1.
This configuration permits many of the same readouts as the original ViT-based model while
also introducing novel view synthesis. While this model is no longer differentiable, we have
reformulated optical flow such that it no longer relies on the Jacobian matrix of the model.
However, our flow interface having changed, we must revisit how to bootstrap optical flow to
product Spelke object segmentation readouts. This project addresses the question, how do we
use CCWM to extract Spelke object segmentations?

3 Method

We propose a method for Spelke object segmentation with CCWM using a simple inference-
time readout. We first recall that, in a simple RGB-only model, we can arbitrarily choose to
condition which rgbl patches to condition our rollout on. We observe that, using our current
rgb0 + C to F model (camera pose to flow), we can similarly choose which flow patches to
condition on. That is, because flow sequences are constructed similarly to images, we can
condition the rollout on arbitrary counterfactual flow patches of our choosing. This effectively
treats the model as a camera-pose-conditioned sparse-to-dense optical flow predictor. We show
that this sparse-to-dense flow predictor can be used to predict Spelke segmentations.

Readout Algorithm We start by choosing some view-space direction; without loss of gen-
erality, we choose the direction “right”. We apply the following conditions to the model: (1)
in-plane camera translation to the right some small amount, e.g. 0.1 meters, and (2) at our
query point, inject a single optical flow patch to the right some small number of pixels, e.g.
8. After computing sparse to dense flow with these conditions, the scene “should” have flow
pointing to the left (opposite the camera motion), except for the queried object, which “should”
have flow pointing right (same as the injected flow). We can repeat multiple times with various
motion directions and seeds, and determine whether a given patch should be included in the
segmentation using the following patch-wise score:

N
1 : i) i
Sy = N E 51gn(Fp()-C)
i=1

Spelke Object Segmentation with Counterfactual World Modeling

Here, Fp(i) is the predicted flow of patch p in sample i, and C¥ is the counterfactual camera
motion direction for sample ¢ projected onto the camera plane. We include a patch p in the
segmentation if its score is positive, i.e. if S, > 0.

4 Experiments

We conduct rollout experiments on a subset of the COCO dataset) with query points chosen
uniformly random at least 10 patches (40 pixels) away from the image border. After iteration
over many combinations of motion directions and seed counts, we settle on 4 seeds for each
motion direction, and 2 motion directions: in-plane left, and in-plane right. We observe other
directions, such as up and down, can have detrimental effects on performance, as they often
would induce physically implausible counterfactual motions. For example, giving downward
flow to an object on a table could imply the object moves through the table, which contradicts
the model’s prior information on physical interactions. Similarly, an upwards flow could imply
the object is defying gravity, further confusing the model. In most cases, leftward and rightward
flow are significantly more plausible, although this is not always necessarily the case (e.g. an
object placed against a wall.) See the Appendix for sample Spelke segmentations and the
optical flow predictions used to make them.

Evaluation Quantitative evaluation in this setting is especially difficult for multiple reasons:
(1) As described before, Spelke object segmentation is significantly different from other def-
initions of segmentation, and limited computer vision work on the subject means there are
essentially no datasets available for proper evaluation. (2) Also as described before, Spelke
affinity is not always well-defined, and thus any hand-designed Spelke object segmentations
are inherently subjective and may not correspond with an otherwise “valid” readout provided
by the model. (3) We observe a large amount of variance in the model’s predictions, possibly
due to either the ill-posedness of the task or the subpar quality of our current model, and
hence any quantitative evaluation may not be reliable. For these reasons, we choose not to
perform a quantitative evaluation, and rather focus on qualitative evaluation of the algorithm’s
performance in a computational neuroscience context.

5 Conclusions

In this paper, we present a method for extracting Spelke object segmentation from Causal
CWM models using sparse-to-dense optical flow prediction. Our experiments exhibit acceptable
qualitative performance on a number of samples from the COCO dataset [/, We observe some
failure cases in which points are segmented even if they intuitively have high Spelke affinity,
such as a tie segmented separately from the shirt it’s attached to. Occasionally, stronger failure
cases arise, especially images with complex visual patterns that likely confuse the model. The
latter may be partially due to the local patch quantization scheme, in which tokens only contain
local visual information with no information about the global context of the image.

We also observe large variance in the model’s dense flow predictions and, consequently, its
segmentations. This variance originates from the randomized nature of the rollout algorithm,
including autoregressive token sampling and uniformly randomized flow patch ordering. In
future work, we hope to explore ways to improve this rollout algorithm to improve its con-
sistency, such as rolling out patches in order of decreasing logit entropy (similar to keypoint

4

Spelke Object Segmentation with Counterfactual World Modeling

extraction.) Furthermore, the model used in these experiments is a 100-million-parameter
transformer, which is significantly smaller than current state-of-the-art language models. As
we train larger models, it’s possible that some of these inconsistencies will resolve with scale.

6 Contributions

This project is based on current work at Stanford’s NeuroAl Lab advised by Professor Daniel
L. K. Yamins. This work on Spelke object segmentation was performed by Jared Watrous with
helpful consultation from colleagues at the lab. Many thanks to all of those involved in the
Causal CWM project, including Klemen Kotar, Honglin Chen, Wanhee Lee, Rahul Venkatesh,
and Daniel L. K. Yamins.

References

[1] Daniel M. Bear, Kevin Feigelis, Honglin Chen, Wanhee Lee, Rahul Venkatesh, Klemen Ko-
tar, Alex Durango, and Daniel L. K. Yamins. Unifying (machine) vision via counterfactual
world modeling, 2023.

[2] Honglin Chen, Rahul Venkatesh, Yoni Friedman, Jiajun Wu, Joshua B. Tenenbaum, Daniel
L. K. Yamins, and Daniel M. Bear. Unsupervised segmentation in real-world images via
spelke object inference, 2022.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[4] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft
coco: Common objects in context, 2015.

[5] Elizabeth S. Spelke. Principles of object perception. Cognitive Science, 14(1):29-56, 1990.

[6] Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk Sohn, David Min-
nen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann,
Boqing Gong, Ming-Hsuan Yang, Irfan Essa, David A. Ross, and Lu Jiang. Language model
beats diffusion — tokenizer is key to visual generation, 2024.

Appendix: CCWM Spelke Segmentation Examples

Here we present many samples of Spelke object segmentation using our method described in
this paper. In each sample, the top left image is the input rgb0 to the model, the top middle-
left indicates the query point (the blue and red circle), the top middle-right is the predicted
segmentation mask, and the top right is the segmentation applied to the image. The bottom
two rows are the 8 optical flow predictions used to compute the segmentations; the middle row
indicates counterfactual camera and object motion to the right, inducing background motion to
the left, and the bottom row reverses these directions. Each column in these two rows indicates
a different seed used to roll out the result.

Spelke Object Segmentation with Counterfactual World Modeling

Predicted Mask

04
50
100
150
200
250
o 10 20 30 40 50 60

Predicted Flow 1: [8, 0], seed=0 Predicted Flow 2: [8, 0], seed=1 Predicted Flow 3: [8, 0], seed=2 Predicted Flow 4: [8, 0], seed=3

o

10
-
201 o=
30
40
50
60
o 10 20 30 40 50 60 70

0 10 20 30 40 50 60

Predicted Segmentation

Frame 0 Query Point

100

150

250

°

50 100 150 200 250

&

0 10 20 20 a0 50 60

Predicted Flow 7: [-8, 0], seed=2 Predicted Flow 8: [-8, 0], seed=3

0 10 20 30 40 50 60 70

Predicted Flow 5: 0], seed=0

Predicted Mask

4 10 20 30 40 50 60

Predicted Segmentation

Frame 0

EY 100 150 200 250 EY 100 150 200 250 EY 100 150 200 250
Predicted Flow 1: [8, 0], seed=0 Predicted Flow 2: [8, 0, seed=1 Predicted Flow 3: [8, 0], seed=2 Predicted Flow 4: [8, 0], seed=3
N 1 (8, 0],
-—
—
10
20
3
Y
50
0
0 1 20 3 4 0 60 o 200 30 M 50 e 0 0 1 20 3 4 s e 70 6 1 20 3 4 s e 70
Predicted Flow 7: [-8, 0], seed=2 Predicted Flow 8: [-8, 0], seed=3
Predicted Flow 5: [-8, 0], seed=0
0

A
S '
20 &’ - -

b

0
10
20
30
=

1 =
e =
r -— o
~
50 o el 5
-—
60
60
6 1 20 30 4 50 60
° 200 30 45060 1 0 20 30 4 50 6 70 0 10 20 30 % 50 60

Spelke Object Segmentation with Counterfactual World Modeling

Frame 0 Query Point Predicted Mask Predicted

IR

50

Predicted Flow 3: [8, 0], seed=2
Predicted Flow 1: [8, 0], seed=0

Predicted Flow 7: [-8, 0], seed=2

Predicted Flow

10 e
s & 10
-
20 - =
A - | 2
=
30 - e "'T_. "
-
w0 - -
g — 40
50 2
-—a 50
60 ” ‘Q— ?
- -— 60
1
0 1 20 0 4 s 6 0 5 1o 20 3 4% % e 7
Frame 0 Query Point Predicted Mask Predicted

200 200

100 150
Predicted Flow 1: [8, 0], seed=0 Predicted Flow 2: [8, 0], seed=1

Predicted Flow 3: [8, 0], seed=2 Predicted Flow 4: [8, 0], seed=3

E)

8
-ty A

20 30 50 0 10 20 30 40 50 60

Predicted Flow 7: [-8, 0], seed=2

Predicted Flow 6: -8, 0], seed=1

Predicted Flow 8: [-8, 0], seed=3

Predicted Flow

Frame 0

100

150

100 150

Predicted Flow 1: [8, 0], seed=0

60

Frame 0

100

150 200

Predicted Flow 1: [8, 0], seed=0

20 30 40 50

Predicted Flow 5: [-8, 0], seed=0

Spelke Object Segmentation with Counterfactual World Modeling

Query Point

100

150
Predicted Flow 2: [8, 0], seed=1

200

Predicted Mask

10 20 30 40 50
Predicted Flow 3: [8, 0], seed=2

-
=

0
0
20
»
©
50
*
0 J' -
o m oz

0o 30) 50 60
Predicted Flow 6: [-8, 0], seed=1

0 20 30 4 50
Predicted Flow 7: [-8, 0], seed=2

Predicted Segmentation

100

10 20 30 0 50

Predicted Flow 8: [-8, 0], seed=3

e

o .
10
20
20
40
50
60
0 10

Query Point

0
50
100
150
200
250
o 50 100 150 200 250

Predicted Flow 2: [8, 0], seed=1

o

10
20
30

0

50

60

0 10 20 30 40 50 60

Predicted Flow 6: -8, 0], seed=1

70

o
10
20
- -
w0
50
60
0 0 20 3 4 50 6 70

10 20 30 40 50 60

Predicted Mask

10 20 30 a0 50

Predicted Flow 3: [8, 0], seed=2

0 10 20 30 0 50

Predicted Flow 7: [-8, 0], seed

60

150

200

250

3

Predicted

50 100 150 200 250

Predicted Flow 4: [8, 0], seed=3

Spelke Object Segmentation with Counterfactual World Modeling

Frame 0 Query Point Predicted Mask Predicted
0
s0
100
150
200
250
20 3 40 50 0 50 100 150 200 250
Predicted Flow 1: [8, 0], seed=0 Predicted Flow 2: [8, 0], seed=1 Predicted Flow 3: [8, 0], seed=2 o Predicted Flow 4: [8, 0], seed=3
o o o -
10 10 10 10
20 ~ 20 20
20 e -— -
-— - = = -
- 30
‘_‘- g
-~ 40
=
s
50
60
0 1 20 3 4 0 6 o 10 2 3 4 s 6
gicted . " Predicted Flow 7: [-8, 0], seed=2
= Predicted Flow 6: [-8, 0], seed=1 .
Fredicted Flow 5: 1.3, 0], seed=0 redicted Flow 6: 16, 0], see Predicted Flow 8: [-8, 0], seed=3
0
10
20
-3 - - -
Y - =
‘3 - -
- - -
40 —
-—
50
60
40 50 60 70
70
Predicted Mask N Predicted
50

50 100 150 100 150 200 10 20 30 a0 50 50 100 150 200 250
Predicted Flow 1: [8, 0], seed=0 Predicted Flow 2: [8, 0], seed=1 Predicted Flow 3: [8, 0], seed=2 Predicted Flow 4: [8, 0], seed=3
o : 8, 0],
0
o 0 o
10 10
10 10 -—
= -
0 e 20 s 2 20 et
B J -
-— -
30 30 - 30 = ™ - = 30
- = -y 3
i el “
g -— 40 0 -
0 — - -~ = ‘4—
-— v
— 2 5 -
50 [~ -z 50 - -
- Ead 4‘# 4-‘-
. =2 - P 60 -
- ==
o 1 20 3 @ 0 6 G 1 20 30 4 s 60 0 1 2 3 4 5 60 9 ® » H» L 0 6
Predicted Flow 5: [-8, 0], seed=0
Predicted Flow 6: [-8, 0], seed=1 Predicted Flow 7: 16, 0], seed=2 Predicted Flow 8: [-8, 0], seed=3
0 o
© 10
20 20
30 EY
a0 £
50 50
0 60
i

Spelke Object Segmentation with Counterfactual World Modeling

Predicted Segmentation

Frame 0 Query Point Predicted Mask .
50
100
150 ‘
| |
200 -
250
o 2 om0 50 B %0 50 200 230

Predicted Flow 3: [8, 0], seed=2

Predicted Flow 4: [8, 0], seed=3

Predicted Flow 2: [8, 0], seed=1

Predicted Mask Predicted

0
50
100
150
200
250
0 10 20 30 40 50 60

Frame 0 Query Point

50 0 50 100 150 200 250
Predicted Flow 1: [8, 0], seed=0 . Predicted Flow 3: [8, 0], seed=2 Predicted Flow 4: [8, 0], seed=3
o 0] e
- -
* = = <3
10 10 —— -
- - -
-
20 -— -
-—
20 20
-—
-
£ 0 »
40 0 40
50 50 50
-
0 60 = 60
- -
o 10 20 30 40 50 60 0 10 20 30 40 50 60

Predicted Flow 6: [-8, 0], seed=1 Predicted Flow 7: [-8, 0], seed=2 Predicted Flow 8: [-8, 0], seed=3

o 10 20 EY a0 50 60

10 20 30 40 50 60 70

10

Spelke Object Segmentation with Counterfactual World Modeling

Frame 0 Query Point Predicted Mask Predicted Segmentation
0
50
100 A
150
200
250
0 50 0 50 100 150 200 250
Predicted Flow 4: [8, 0], seed=3
o
0
10
10
20
20
30
30
w0
40
50
s -— - o
60
60
0 1o 20 3 4 50 60 3 P S S
Predicted Flow 6: [-8, 0], seed=1 Predicted Flow 8: [-8, 0], seed=3

[Predicted Flow 7: [-8, 0], seed=2 0
10 10
20 20
30 30
20 40
50 50
60 60

0 10 20 20 40 50 60 o 10 20 30 40 50 60 70

Frame 0 Predicted Mask Predicted

Query Point

o
50 50 50
100 100 100
150 150 150
200 200 200
250 250 250
50 100 150 50 o 50 100 150 200 250
Predicted Flow 1: [8, 0], seed=0 Predicted Flow 3: [8, 0], seed=2
Predicted Flow 2: [8, 0], seed=1 o Predicted Flow 4: [8, 0], seed=3
o - = - o
- 0
- F = —
10 -— - -
10 < -— - -
10 -—
-— -~
-~ & 20 - -— - ——
» S » = -~
- ‘
-—
30 30 ‘\\ \ * » =
= P
-~
Py w0 - S ~ 40
-~
=
50 50 ~ 50
0 a 0 60
o 0 20 3 4%
[o 20 30 4 50 6 0 10 20 30) 50 0
Predicted Flow 6: [-8, 0], seed=1 "
Predicted Flow 5: -8, 0], seed=0 L L Predicted Flow 7: [-8, 0], seed=2 Predicted Flow 8: [-8, 0], seed=3
° - - 0 - S 0
- - == -
o - e - - . o
- - 10 - _-» - 3
- e S -
~ 20 e =
20 -——— 20 = i -
-—
-
= > —'% - = o] s =
0] PH g T - 30 - 0] AN -
- - -
o] > *5% w = 1 ==
- - -
> - — T - —_
5 “cs s I o - :__: o
» " - - £
- -
60
60 ; K 60 < - z
o 0 20 2 4w 0 60
I T T 0 o 20 0 4 0 6 70

Spelke Object Segmentation with Counterfactual World Modeling

Predicted Mask

Predicted Segmentation

Query Point

Frame 0

150

250 4.
20 30 40 50 o 50 100 150 200 250

Predicted Flow 1: [8, 0], seed Predicted Flow 2: (8, 0], seed=1 rediced Flow 31 5, 0], seed-2 Predicted Flow 4: (8, 0], seed=3
o -
10
20

10 20 30 40 50

Predicted Flow 5: [-8, 0], seed=0

Predicted Flow 7: [-8, 0], seed=2

Predicted Flow 8: [-8, 0], seed=3

Predicted Mask Predicted Segmentation

Query Point

Frame 0

150 150
200 200
250 250
10 20 30 40 50 100 150
Predicted Flow 1: [8, 0], seed=0 Predicted Flow 2: [8, 0], seed=1 Predicted Flow 3: [8, 0], seed=2 Predicted Flow 4: 8, 0], seed=3
o o o o
10 10 10 10
2 -
30 f 30 * 30 30
) w0) o)
50 50 50 50
60 60 60 60
1 10 20 0 40 50 60 1) 20 30 40 50 50 o 10 20 30) 50 60 0 b3 20 30) 50 60
. Predicted Flow 5: [-8, 0], seed=0 Predicted Flow 6: [-8, 0], seed=1 . Predicted Flow 7: [-8, 0], seed=2 Predicted Flow 8: [.6, 0], seed=3
07 - = ey 0
s r
. » .
- 0 - 10
-
20 20 f
20 [~ -> - ‘—" 20
> = <
- = = :
1 - B "‘;' - * *= 30
- - E
- 41‘ o -
-
o P . - 40 .c 20
! -
-’ = . £ hcS
. . - % BN .
- -
-
60 60 ! g s 60
o 10 20 30 40 50 60 o 10 20 0 o 50 60) 10 20 30 40 50 60 0 10 2 * “° = 60

12

	Background
	Introduction
	Method
	Experiments
	Conclusions
	Contributions

